Skip to main content

Advertisement

Log in

A modified carrier-to-code leveling method for retrieving ionospheric observables and detecting short-term temporal variability of receiver differential code biases

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Sensing the ionosphere with the global positioning system involves two sequential tasks, namely the ionospheric observable retrieval and the ionospheric parameter estimation. A prominent source of error has long been identified as short-term variability in receiver differential code bias (rDCB). We modify the carrier-to-code leveling (CCL), a method commonly used to accomplish the first task, through assuming rDCB to be unlinked in time. Aside from the ionospheric observables, which are affected by, among others, the rDCB at one reference epoch, the Modified CCL (MCCL) can also provide the rDCB offsets with respect to the reference epoch as by-products. Two consequences arise. First, MCCL is capable of excluding the effects of time-varying rDCB from the ionospheric observables, which, in turn, improves the quality of ionospheric parameters of interest. Second, MCCL has significant potential as a means to detect between-epoch fluctuations experienced by rDCB of a single receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Artru J, Ducic V, Kanamori H, Lognonné P, Murakami M (2005) Ionospheric detection of gravity waves induced by tsunamis. Geophys J Int 160(3):840–848

    Article  Google Scholar 

  • Banville S, Langley RB (2011) Defining the basis of an integer-levelling procedure for estimating slant total electron content. In: Proceedings of the 24th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2011), pp 2542–2551

  • Banville S, Zhang W, Ghoddousi-Fard R, Langley RB (2012) Ionospheric monitoring using “integer-levelled” observations. In: Proceedings of the 25th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2012), pp 2692–2701

  • Brunini C, Azpilicueta FJ (2009) Accuracy assessment of the GPS-based slant total electron content. J Geod 83(8):773–785

    Article  Google Scholar 

  • Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84(5):293–304

    Article  Google Scholar 

  • Brunini C, Camilion E, Azpilicueta F (2011) Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model. J Geod 85(9):637

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120

    Article  Google Scholar 

  • Coster A, Williams J, Weatherwax A, Rideout W, Herne D (2013) Accuracy of GPS total electron content: GPS receiver bias temperature dependence. Radio Sci 48(2):190–196

    Article  Google Scholar 

  • Dautermann T, Calais E, Haase J, Garrison J (2007) Investigation of ionospheric electron content variations before earthquakes in southern California, 2003–2004. J Geophy Res Solid Earth 112:B02106. https://doi.org/10.1029/2006JB004447

  • Dettmering D, Limberger M, Schmidt M (2014) Using DORIS measurements for modeling the vertical total electron content of the Earth’s ionosphere. J Geod 88(12):1131–1143

    Article  Google Scholar 

  • Dyrud L, Jovancevic A, Brown A, Wilson D, Ganguly S (2008) Ionospheric measurement with GPS: receiver techniques and methods. Radio Sci 43:RS6002. https://doi.org/10.1029/2007RS003770

  • Feltens J (2003) The international GPS service (IGS) ionosphere working group. Adv Space Res 31(3):635–644

    Article  Google Scholar 

  • Gulyaeva TL, Arikan F, Hernandezc-Pajares M, Veselovsky I (2014) North-south components of the annual asymmetry in the ionosphere. Radio Sci 49(7):485–496

    Article  Google Scholar 

  • Hauschild A, Montenbruck O (2016) A study on the dependency of GNSS pseudorange biases on correlator spacing. GPS Solut 20(2):159–171

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M et al (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275

    Article  Google Scholar 

  • Jorgensen P (1978) Ionospheric measurements from NAVSTAR satellites. Rep. SAMSO-TR-79-29, AD A068809,Def. Tech. Inf. Cent. Cameron Stat., Alexandria, Va

  • Kao S, Tu Y, Chen W, Weng D, Ji S (2013) Factors affecting the estimation of GPS receiver instrumental biases. Surv Rev 45(328):59–67

    Article  Google Scholar 

  • Amir Khodabandeh, Teunissen P (2016) Array-aided multifrequency GNSS ionospheric sensing: estimability and precision analysis. IEEE Trans Geosci Remote 54(10):5895–5913

    Article  Google Scholar 

  • Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40:RS6006. https://doi.org/10.1029/2005RS003279

  • Komjathy A et al (2012) Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: the Tohoku case study. Earth Planets Space 64(12):1287–1294

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying. Wiley, Hoboken

    Book  Google Scholar 

  • Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geod 89(4):331–345

  • Li M, Yuan Y, Zhang B, Wang N, Li Z, Liu X, Zhang X (2017) Determination of the optimized single-layer ionospheric height for electron content measurements over China. J Geod. https://doi.org/10.1007/s00190-017-1054-6

  • Liu Z, Gao Y (2004) Ionospheric TEC predictions over a local area GPS reference network. GPS Solut 8(1):23–29

    Article  Google Scholar 

  • Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the earth’s ionospheric total electron content using the GPS global network. In: Proceedings of ION GPS-93, the 6th international technical meeting of the satellite division of the Institute of Navigation, Salt Lake City, UT, 22–24 September 1993, pp 1323–1332

  • Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582

    Article  Google Scholar 

  • Park J, von Frese RR, Grejner-Brzezinska DA, Morton Y, Gaya-Pique LR (2011) Ionospheric detection of the 25 May 2009 North Korean underground nuclear test. Geophys Res Lett 38:L22802. https://doi.org/10.1029/2011GL049430

  • Sardon E, Rius A, Zarraoa N (1994a) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci 29(3):577–586

    Article  Google Scholar 

  • Sardon E, Rius A, Zarraoa N (1994b) Ionospheric calibration of single frequency VLBI and GPS observations using dual GPS data. J Geod 68(4):230–235

    Google Scholar 

  • Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system. Ph.D. Dissertation Astronomical Institute, University of Berne, Berne, Switzerland, 25 March

  • Teunissen PJG (1985) Zero order design: generalized inverses, adjustment, the datum problem and S-transformations. In: Grafarend EW, Sanso F (eds) Optimization and design of geodetic networks. Springer, Berlin, Heidelberg, New York, Tokyo, pp 11–55

    Chapter  Google Scholar 

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228

    Article  Google Scholar 

  • Wanninger L, Sumaya H, Beer S (2017) Group delay variations of GPS transmitting and receiving antennas. J Geod 91(9):1099–1116

    Article  Google Scholar 

  • Xue J, Song S, Zhu W (2016) Estimation of differential code biases for Beidou navigation system using multi-GNSS observations: how stable are the differential satellite and receiver code biases? J Geod 90(4):309–321

    Article  Google Scholar 

  • Zhang B, Teunissen PJ (2015) Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines. Sci Bull 60(21):1840–1849

    Article  Google Scholar 

  • Zhang B, Ou J, Yuan Y, Li Z (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China Earth Sci 55(11):1919–1928. https://doi.org/10.1007/s11430-012-4454-8

  • Zhang X, Xie W, Ren X, Li X, Zhang K, Jiang W (2017) Influence of the GLONASS inter-frequency bias on differential code bias estimation and ionospheric modeling. GPS Solut 21(3):1355–1367

    Article  Google Scholar 

  • Zhong J, Lei J, Dou X, Yue X (2016) Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability? GPS Solut 20(3):313–319

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National key Research Program of China “Collaborative Precision Positioning Project” (No. 2016YFB0501900) and the National Natural Science Foundation of China (Nos. 41604031, 41774042, 41621091). The first author is supported by the CAS Pioneer Hundred Talents Program. The third author acknowledges LU JIAXI International team program supported by the K.C. Wong Education Foundation and CAS. Special thanks go to Dr. Francisco Azpilicueta for providing the data set used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baocheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Teunissen, P.J.G., Yuan, Y. et al. A modified carrier-to-code leveling method for retrieving ionospheric observables and detecting short-term temporal variability of receiver differential code biases. J Geod 93, 19–28 (2019). https://doi.org/10.1007/s00190-018-1135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1135-1

Keywords

Navigation