Skip to main content
Log in

Global convergence in an overlapping generations model with two-sided altruism

  • Regular Article
  • Published:
Journal of Evolutionary Economics Aims and scope Submit manuscript

Abstract

We study the evolutionary dynamics of an overlapping generations economy with two-sided altruism, where each generation cares about the utilities of its parental generation, its offspring, and its own. We assume that the young and old generations in each period act jointly, as a central planner. We then introduce the concepts of a two-sided altruistic path and a two-sided altruistic stationary path. Then, we go on to prove that the former always converges to the latter, in the two-sided altruistic model. This stationary capital level is higher than the steady-state level in the model with a constant discount factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. There exist extensive works in which the economic agents are assumed to be mutually dependent and to make decisions that are not necessarily consistent with rational choice. See Lane et al. (1996) and Hommes (2009).

  2. See also Abel (1987), Altig and Davis (1993), Blackburn and Cipriani (2005), and Raut (2006) for other examples of two-sided altruism.

  3. In relation to the works by Lane et al. (1996) and Hommes (2009), their “agents” comprise the “generations” in our model, where rationality is also bounded.

  4. U4 is used to guarantee the strict concavity of the total utility of each generation defined in (12) below. The CARA utility function u(x) =  − e axas well as Cobb-Douglas utility functions satisfy U4.

  5. This was suggested by an anonymous referee.

  6. The notation w β(⋅) in Aoki and Nishimura (2014) is the same as w 1/β (⋅) in this paper.

  7. While Hori (1997) considers the intergenerational game and the best response function of the next generation, in this paper we are rather interested in agents with a naive expectation and the resulting evolutionary dynamics.

References

  • Abel AB (1987) Operative gift and bequest motives. Am Econ Rev 77:1037–1047

    Google Scholar 

  • Altig D, Davis SJ (1993) Borrowing constraints and two-sided altruism with an application to social security. J Econ Dyn Control 17:467–494

    Article  Google Scholar 

  • Aoki T, Nishimura K (2014) On the convergence of optimal solutions in infinite horizon discrete time models. J Differ Equ Appl 20:875–882

    Article  Google Scholar 

  • Barro RJ (1974) Are government bonds net wealth? J Polit Econ 81:1095–1117

    Article  Google Scholar 

  • Blackburn K, Cipriani GP (2005) Intergenerational transfers and demographic transition. J Dev Econ 78:191–214

    Article  Google Scholar 

  • Cass D (1965) Optimum growth in an aggregative model of capital accumulation. Rev Econ Stud 32:233–240

    Article  Google Scholar 

  • Dechert DW, Nishimura K (1983) A complete characterization of optimal growth paths in an aggregated model with a non-concave production function. J Econ Theory 31:332–354

    Article  Google Scholar 

  • Hommes C (2009) Bounded rationality and learning in complex markets. Handbook of research on complexity, Chapter 5, Edward Elgar Publishing

  • Hori H (1997) Dynamic allocation in an altruistic overlapping generations economy. J Econ Theory 73:292–315

    Article  Google Scholar 

  • Hori H, Kanaya S (1989) Utility functionals with nonpaternalistic intergenerational altruism. J Econ Theory 49:241–265

    Article  Google Scholar 

  • Kimball MS (1987) Making sense of two-sided altruism. J Monetary Econ 20:301–326

    Article  Google Scholar 

  • Koopmans TC (1965) On the concept of optimal economic growth. Pontificae Academiae Scientiarum Scripta Varia 28:225–300

    Google Scholar 

  • Lambrecht S, Michel P, Thibault E (2006) Capital accumulation and fiscal policy in an OLG model with family altruism. Journal of Public Econ Theory 8:465–486

    Article  Google Scholar 

  • Lane D, Malerba F, Maxfield R, Orsenigo L (1996) Choice and action. J Evol Econ 6:43–76

    Article  Google Scholar 

  • Lucas RE (1972) Econometric testing of the natural rate hypothesis. In: O. Eckstein (ed.) The econometrics of price determination Conference, Board of Governors of the Federal Reserve System and Social Science Research Council

  • Michel P, Thibault E (2007) The failure of ricardian equivalence under dynastic altruism. J Math Econ 43:606–614

    Article  Google Scholar 

  • Muth JF (1961) Rational expectations and the theory of price movements. Econometrica 29:315–335

    Article  Google Scholar 

  • Ramsey F (1928) A mathematical theory of saving. Econ J 38:543–559

    Article  Google Scholar 

  • Raut LK (2006) Two-sided altruism, Lindahl equilibrium, and Pareto optimality in overlapping generations models. Economic Theory 27:729–736

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editor and two anonymous referees for helpful comments and suggestions. We also thank Sadao Kanaya for the useful conversations during the initial stage of this research. This work was supported by the Japan Society for the Promotion of Science, Grants-in-Aid for Research #15H05729 and #16H0233598.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Nishimura.

Ethics declarations

Funding

This study is funded by Japan Society for the Promotion of Science (Grants-in-Aid for Research #15H05729 and #16H0233598).

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

A. Proof of Lemma 2: By definition, w τ(c) = max c ≥ x ≥ 0[u(x) + τu(c − x)]. Its solution x is denoted as a function of c by x(c). Because Assumption U3 assures that x is an interior of [0, c], the first order equation is u (x) − τu (c − x) = 0. Totally differentiating it gives [u (x) + τu (c − x)]dx − τu (c − x)dc = 0. Therefore, x is smooth in c by the implicit function theorem, and \( \frac{dx}{dc}=\frac{dx}{dc} \). Due to strict concavity u (⋅) < 0, \( 0<\frac{dx}{dc}<1 \) holds. Thus, \( {w}_{\tau}^{\prime }(c)=\tau {u}^{\prime}\left( c- x(c)\right)+\left[{u}^{\prime}\left( x(c)\right)-\tau {u}^{\prime}\left( c- x(c)\right)\right]\frac{dx}{dc}=\tau {u}^{\prime}\left( c- x(c)\right)>0 \), and\( {w}_{\tau}^{{\prime\prime} }(c)=\tau {u}^{{\prime\prime}}\left( c- x(c)\right)-\tau {u}^{{\prime\prime}}\left( c- x(c)\right)\frac{dx}{dc}=\tau {u}^{{\prime\prime}}\left( c- x(c)\right)\left(1-\frac{dx}{dc}\right)<0 \). Both prove that w τ (c) is strictly increasing and strictly concave in c. \( { \lim}_{c\to 0}{w}_{\tau}^{\prime }(c)=\infty \) follows from Assumption U3.

Next, again by definition, w 1/β (c) = u(x(c)) + β −1 u(c − x(c)), where x(c) is already defined as argmax c ≥ x ≥ 0[u(x) + τu(c − x)].

Then w 1/β (c) = u(x(c)) + τu(c − x(c)) + (1/β − τ)u(c − x(c))=w τ (c) + (1/β − τ)u(c − x(c)). Differentiating w 1/β (c) with c gives \( {w}_{1/\beta}^{\prime }(c)={w}_{\tau}^{\prime }(c)+\left(1/\beta -\tau \right){u}^{\prime}\left( c- x(c)\right)\left(1-\frac{dx}{dc}\right) \). Since 1/β − τ > 0, u (⋅) > 0, and \( 1-\frac{dx}{dc}>0 \), we have \( {w}_{1/\beta}^{\prime }(c)>{w}_{\tau}^{\prime }(c)>0 \). Hence, w 1/β (c) is strictly increasing, and \( { \lim}_{c\to 0}{w}_{1/\beta}^{\prime }(c)=\infty \) follows from Assumption U3.

Again, differentiating \( {w}_{1/\beta}^{\prime }(c) \) with respect to c gives \( {w}_{1/\beta}^{{\prime\prime} }(c)={w}_{\tau}^{{\prime\prime} }(c)+\left(1/\beta -\tau \right)\left[{u}^{{\prime\prime}}\left( c- x(c)\right){\left(1-\frac{dx}{dc}\right)}^2-{u}^{\prime}\left( c- x(c)\right)\frac{dx}{dc}\right] \).

Thus, the sufficient condition for the strict concavity of w 1/β (c), \( {w}_{\beta}^{{\prime\prime} }(c)<0 \) is \( \frac{d^2 x}{{d c}^2}\ge 0 \). Denoting Δ = {u (x(c)) + τu (c − x(c))},

$$ \begin{array}{l}\frac{d^2 x}{{d c}^2}=\frac{\tau}{\Delta^2}\left[\begin{array}{c}\hfill {u}^{{\prime\prime\prime}}\left( c- x(c)\right)\left(1-\frac{ d x}{ d c}\right)\left\{{u}^{{\prime\prime}}\left( x(c)\right)+\tau {u}^{{\prime\prime}}\left( c- x(c)\right)\right\}\hfill \\ {}\hfill -{u}^{{\prime\prime}}\left( c- x(c)\right)\left\{{u}^{{\prime\prime\prime}}\left( x(c)\right)\frac{ d x}{ d c}+\tau {u}^{{\prime\prime\prime}}\left( c- x(c)\right)\left(1-\frac{ d x}{ d c}\right)\right\}\hfill \end{array}\right]\\ {}=\frac{\tau}{\Delta^2}\left[{u}^{{\prime\prime\prime}}\left( c- x(c)\right){u}^{{\prime\prime}}\left( x(c)\right)\left(1-\frac{ d x}{ d c}\right)-{u}^{{\prime\prime}}\left( c- x(c)\right){u}^{{\prime\prime\prime}}\left( x(c)\right)\frac{ d x}{ d c}\right]\\ {}=\frac{\tau}{\Delta^3}\left[{u}^{{\prime\prime\prime}}\left( c- x(c)\right){\left\{{u}^{{\prime\prime}}\left( x(c)\right)\right\}}^2-\tau {\left\{{u}^{{\prime\prime}}\left( c- x(c)\right)\right\}}^2{u}^{{\prime\prime\prime}}\left( x(c)\right)\right].\end{array} $$
(20)

Because Δ < 0, \( \frac{d^2 x}{{d c}^2}\ge 0 \) is equivalent tou (c − x(c)){u (x(c))}2 − τ{u (c − x(c))}2 u (x(c)) ≤ 0, that is, \( \frac{u^{{\prime\prime\prime}}\left( c- x(c)\right)}{\tau {\left\{{u}^{{\prime\prime}}\left( c- x(c)\right)\right\}}^2}\le \frac{u^{{\prime\prime\prime}}\left( c- x(c)\right)}{\tau {\left\{{u}^{{\prime\prime}}\left( c- x(c)\right)\right\}}^2} \). This is satisfied from Lemma 1 and Assumption U4 because u (x(c)) − τu (c − x(c)) = 0 and x(c) > c − x(c) > 0. □.

B. Proof of Lemma 3: Set k 0 > 0. Suppose k 1 = 0. Therefore, k t  = 0 (all t ≥ 1). Then W(k 0) = w τ (f(k 0) − 0). Consider an alternative solution \( {k}_1^{\prime }=\varepsilon >0 \) and \( {k}_2^{\prime }=0 \), where the corresponding utility is w τ (f (k 0) − ε) + βw 1/β  (f (ε) − 0). Because \( {\left\{{k}_t\right\}}_{t=0}^{\infty } \) is an optimal solution,

$$ {w}_{\tau}\left( f\left({k}_0\right)\right)\ge {w}_{\tau}\left( f\left({k}_0\right)-\varepsilon \right)+\beta {w}_{1/\beta}\left( f\left(\varepsilon \right)\right). $$
(21)

Arranging and dividing both sides by ε gives

$$ \frac{w_{\tau}\left( f\left({k}_0\right)\right)-{w}_{\tau}\left( f\left({k}_0\right)-\varepsilon \right)}{\varepsilon}\ge \beta \frac{w_{1/\beta}\left( f\left(\varepsilon \right)\right)-{w}_{1/\beta}\left( f(0)\right)}{\varepsilon}. $$
(22)

Due to Assumption F1 and Lemma 2, f(0) = 0 and w 1/β (0) = 0. By taking the limits as ε → 0, the left-hand side converges to \( {w}_{\tau}^{\prime}\left( f\left({k}_0\right)\right) \), while the right-hand side diverges to \( { \lim}_{\varepsilon \to 0}\beta {w}_{1/\beta}^{\prime}\left( f\left(\varepsilon \right)\right){f}^{\prime}\left(\varepsilon \right)=\infty \) due to Assumption F4 and Lemma 2. The above inequality leads to a contradiction because ε can be arbitrarily small. Therefore, k 1 > 0. Similarly k t + 1 > 0 (t ≥ 1) can be confirmed by replacing w τ by w 1/β .

Next we shall prove that c t  = f(k t ) − k t + 1 > 0 for all t ≥ 0. Suppose k 0 > 0, but c 0 = 0 (i.e., f(k 0) = k 1) and c 1 > 0 (i.e., f(k 1) > k 2). Then

$$ W\left({k}_0\right)={w}_{\tau}(0)+\beta {w}_{1/\beta}\left( f\left({k}_1\right)-{k}_2\right)+{\beta}^2\overline{W}\left({k}_2\right). $$
(23)

As k 1 > 0 and c 1 = f(k 1) − k 2 > 0, an alternative solution of \( {k}_1^{\prime }={k}_1-\varepsilon >0 \) and \( {k}_2^{\prime }={k}_2 \) is feasible for sufficiently small ε > 0, where the corresponding utility is \( {w}_{\tau}\left(\varepsilon \right)+\beta {w}_{1/\beta}\left( f\left({k}_1-\varepsilon \right)-{k}_2\right)+{\beta}^2\overline{W}\left({k}_2\right) \). Because \( {\left\{{k}_t\right\}}_{t=0}^{\infty } \) is the optimal solution,

$$ {w}_{\tau}(0)+\beta {w}_{1/\beta}\left( f\left({k}_1\right)-{k}_2\right)+{\beta}^2\overline{W}\left({k}_2\right)\ge {w}_{\tau}\left(\varepsilon \right)+\beta {w}_{1/\beta}\left( f\left({k}_1-\varepsilon \right)-{k}_2\right)+{\beta}^2\overline{W}\left({k}_2\right). $$
(24)

Arranging and dividing both sides by ε gives

$$ \beta \frac{w_{1/\beta}\left( f\left({k}_1\right)-{k}_2\right)-{w}_{1/\beta}\left( f\left({k}_1-\varepsilon \right)-{k}_2\right)}{\varepsilon}\ge \frac{w_{\tau}\left(\varepsilon \right)-{w}_{\tau}(0)}{\varepsilon}. $$
(25)

By taking the limits as ε → 0, the left-hand side converges to \( \beta {w}_{1/\beta}^{\prime}\left( f\left({k}_1\right)-{k}_2\right){f}^{\prime}\left({k}_1\right) \), whereas the right-hand side diverges to \( { \lim}_{\varepsilon \to 0}{w}_{\tau}^{\prime}\left(\varepsilon \right)=\infty \) due to Lemma 2. The above inequality leads to a contradiction because ε can be arbitrarily small. Therefore, c 0 = c 1 = 0, or c 0 > 0.

Suppose that c 0 = c 1 = 0 and T is the smallest in t ≥ 1 such that c T  = 0 and c T + 1 > 0. If such a T does not exist, then c t  = 0 for all t ≥ 1 must be true. Clearly, this is not optimal. Therefore, such a T exists. Then, by the same reasoning as above, it leads to a contradiction. Therefore, c T + 1 > 0 must imply c T  > 0. Due to recursive induction, c t  > 0 for all t ≤ T + 1. Hence, c 0 > 0 and c 1 > 0 must be true. Because c 0 > 0 and c 1 > 0, either c t  > 0 for all t ≥ 0 or c t  = 0 for some t ≥ 2. Suppose that T is the smallest in t ≥ 2 with c t  = 0 and c t + 1 > 0. Then the same reasoning as above leads to a contradiction. Hence, c t  > 0 for all t ≥ 0.

C. Proof of Lemma 4: Let \( {\left\{{k}_t^{\prime}\right\}}_{t=0}^{\infty } \) and \( {\left\{{k}_t\right\}}_{t=0}^{\infty } \) be the optimal solution from \( {k}_0^{\prime } \) and k 0, respectively.

$$ \begin{array}{l}\frac{1}{2}\left[ W\left({k}_0^{\prime}\right)+ W\left({k}_0\right)\right]=\frac{1}{2}\sum_{t=0}^{\infty }{\beta}^t\left[{\tilde{w}}_t\left( f\left({k}_t^{\prime}\right)-{k}_{t+1}^{\prime}\right)+{\tilde{w}}_t\left( f\left({k}_t\right)-{k}_{t+1}\right)\right]\\ {}\le \sum_{t=0}^{\infty }{\beta}^t{\tilde{w}}_t\left(\frac{f\left({k}_t^{\prime}\right)+ f\left({k}_t\right)}{2}-\frac{k_{t+1}^{\prime }+{k}_{t+1}}{2}\right)\\ {}\le \sum_{t=0}^{\infty }{\beta}^t\left[{\tilde{w}}_t\left( f\left(\frac{k_t^{\prime }+{k}_t}{2}\right)-\frac{k_{t+1}^{\prime }+{k}_{t+1}}{2}\right)\right]\\ {}\le W\left(\frac{k_0^{\prime }+{k}_0}{2}\right),\end{array} $$
(26)

where \( {\tilde{w}}_t(c)={w}_{\tau}(c) \) for t = 0, and \( {\tilde{w}}_t(c)={w}_{1/\beta}(c) \) for t ≥ 1. The second inequality strictly holds for \( {k}_0^{\prime}\ne {k}_0 \). Thus, for \( {k}_0^{\prime}\ne {k}_0 \), \( \frac{1}{2}\left[ W\left({k}_0^{\prime}\right)+ W\left({k}_0\right)\right]< W\left(\frac{1}{2}\right) \) holds, implying that W(⋅) is strictly concave.

Next, let \( {k}_0^{\prime }={k}_0 \) and suppose that two optimal solutions, \( {\left\{{k}_t^{\prime}\right\}}_{t=0}^{\infty } \) and \( {\left\{{k}_t\right\}}_{t=0}^{\infty } \), exist. Let’s assume that T is the smallest, such that \( f\left({k}_T^{\prime}\right)-{k}_{T+1}^{\prime}\ne f\left({k}_T\right)-{k}_{T+1} \). Then, the first inequality in (26) becomes strict. Since \( {\left\{\frac{k_t^{\prime }+{k}_t}{2}\right\}}_{t=0}^{\infty } \) gives a higher utility than \( {\left\{{k}_t\right\}}_{t=0}^{\infty } \), there is a contradiction to the optimality of \( {\left\{{k}_t^{\prime}\right\}}_{t=0}^{\infty } \) and \( {\left\{{k}_t\right\}}_{t=0}^{\infty } \). If there is no T such that \( f\left({k}_T^{\prime}\right)-{k}_{T+1}^{\prime}\ne f\left({k}_T\right)-{k}_{T+1} \), then \( {\left\{{k}_t^{\prime}\right\}}_{t=0}^{\infty } \) and \( {\left\{{k}_t\right\}}_{t=0}^{\infty } \) coincide. Thus, \( {k}_t^{\prime }={k}_t \) for all t ≥ 0.

D. Proof of Theorem 1: Suppose that \( {k}_0^{\prime }>{k}_0 \) and \( {k}_1^{\prime }<{k}_1 \). Then \( \left({k}_0,{k}_1^{\prime}\right) \) and \( \left({k}_0^{\prime },{k}_1\right) \) are feasible because

$$ f\left({k}_0\right)-{k}_1^{\prime }> f\left({k}_0\right)-{k}_1>0\ \mathrm{and}\ f\left({k}_0^{\prime}\right)-{k}_1^{\prime }> f\left({k}_0^{\prime}\right)-{k}_1>0 $$
(27)

are true. By the uniqueness of an optimal solution (Lemma 4),

$$ {w}_{\tau}\left( f\left({k}_0\right)-{k}_1\right)+\beta \overline{W}\left({k}_1\right)>{w}_{\tau}\left( f\left({k}_0\right)-{k}_1^{\prime}\right)+\beta \overline{W}\left({k}_1^{\prime}\right) $$
(28)

and

$$ {w}_{\tau}\left( f\left({k}_0^{\prime}\right)-{k}_1^{\prime}\right)+\beta \overline{W}\left({k}_1^{\prime}\right)>{w}_{\tau}\left( f\left({k}_0^{\prime}\right)-{k}_1\right)+\beta \overline{W}\left({k}_1\right) $$
(29)

must be true. Combining (28) and (29) gives

$$ {w}_{\tau}\left( f\left({k}_0\right)-{k}_1\right)+{w}_{\tau}\left( f\left({k}_0^{\prime}\right)-{k}_1^{\prime}\right)>{w}_{\tau}\left( f\left({k}_0\right)-{k}_1^{\prime}\right)+{w}_{\tau}\left( f\left({k}_0^{\prime}\right)-{k}_1\right). $$
(30)

This contradicts the strict concavity of w τ (⋅) because \( f\left({k}_0^{\prime}\right)-{k}_1 \) and \( f\left({k}_0\right)-{k}_1^{\prime } \) lie in \( \Big( f\left({k}_0^{\prime}\right)-{k}_1^{\prime }, \) f(k 0) − k 1). Therefore, \( {k}_1^{\prime}\ge {k}_1 \) must be true. Suppose that \( {k}_1^{\prime }={k}_1 \). By the Euler equation,

$$ -{w}_{\tau}^{\prime}\left( f\left({k}_0\right)-{k}_1\right)+\beta {w}_{1/\beta}^{\prime}\left( f\left({k}_1\right)-{k}_2\right){f}^{\prime}\left({k}_1\right)=0. $$
(31)

Since \( {k}_0^{\prime }>{k}_0 \) and \( {k}_1^{\prime }={k}_1 \), then both \( {\left\{{k}_t\right\}}_{t=1}^{\infty } \) and \( {\left\{{k}_t^{\prime}\right\}}_{t=1}^{\infty } \) are optimal solutions of Problem (II) from \( {k}_1^{\prime }={k}_1 \). Since the optimal solution of Problem (II) is unique, \( {k}_2^{\prime }={k}_2 \) holds, and \( -{w}_{\tau}^{\prime }(x)+\beta {w}_{1/\beta}^{\prime}\left( f\left({k}_1\right)-{k}_2\right){f}^{\prime}\left({k}_1\right)=0 \) has two distinct solutions, x = f(k 0) − k 1 and \( x= f\left({k}_0^{\prime}\right)-{k}_1 \). This contradicts the strictly decreasing property of \( {w}_{\tau}^{\prime }(x) \). Hence, \( {k}_1^{\prime }>{k}_1 \).

Next, \( {\left\{{k}_t\right\}}_{t=1}^{\infty } \) and \( {\left\{{k}_t^{\prime}\right\}}_{t=1}^{\infty } \) are the optimal solutions of Problem (II), given k 1 and \( {k}_t^{\prime } \), respectively. By the principle of optimality, \( \overline{W}\left({k}_1\right)={w}_{1/\beta}\left( f\left({k}_1\right)-{k}_2\right)+\beta \overline{W}\left({k}_2\right) \) and \( \overline{W}\left({k}_1^{\prime}\right)={w}_{1/\beta}\left( f\left({k}_1^{\prime}\right)-{k}_2^{\prime}\right)+\beta \overline{W}\left({k}_2^{\prime}\right) \). Therefore, the same argument as above may be applied, and \( {k}_1^{\prime }>{k}_1 \) implies \( {k}_2^{\prime }>{k}_2 \). Finally, it is proved that \( {k}_0^{\prime }>{k}_0 \) implies \( {k}_t^{\prime }>{k}_t \) for t ≥ 1. □.

E. Proof of Theorem 2: The Euler equation for t ≥ 1 is

$$ -{w}_{1/\beta}^{\prime}\left({c}_t\right)+\beta {w}_{1/\beta}^{\prime}\left({c}_{t+1}\right){f}^{\prime}\left({k}_{t+1}\right)=0,\mathrm{where}\ {c}_t= f\left({k}_t\right)-{k}_{t+1}. $$
(32)

Rewriting this gives \( \beta {f}^{\prime}\left({k}_{t+1}\right)=\frac{w_{1/\beta}^{\prime}\left({c}_t\right)}{w_{1/\beta}^{\prime}\left({c}_{t+1}\right)} \). This equation implies that, if k  > k t + 1, then \( \frac{w_{1/\beta}^{\prime}\left({c}_t\right)}{w_{1/\beta}^{\prime}\left({c}_{t+1}\right)}>1 \) and c t  < c t + 1. If k t + 1 > k , then c t  > c t + 1. Assuming k  > k 1 > 0, k  > k t + 1 > 0 for t ≥ 1 by Theorem 1, assuring that c t  < c t + 1 for all t ≥ 1. That is, c t is increasing, which is impossible if k t converges to 0. Since \( {\left\{{k}_t\right\}}_{t=1}^{\infty } \) is a monotone interior solution, it must monotonically increase and converge to some interior point, say \( \tilde{k} \). Then \( \tilde{k} \) satisfies

$$ -{w}_{1/\beta}^{\prime}\left( f\left(\tilde{k}\right)-\tilde{k}\right)+\beta {w}_{1/\beta}^{\prime}\left( f\left(\tilde{k}\right)-\tilde{k}\right){f}^{\prime}\left(\tilde{k}\right)=0. $$
(33)

Therefore, \( \tilde{k} \) must coincide with k .

Assume k 1 > k . Then k t  > k for all t ≥ 1. If k t converges to \( \overline{k} \) where \( f\left(\overline{k}\right)=\overline{k}>0 \), then c t converges to zero. Clearly, accumulating capital without consuming is not optimal. Therefore, k t does not converge to \( \overline{k} \). Because \( {\left\{{k}_t\right\}}_{t=1}^{\infty } \) is a monotone interior solution, it must converge to k . □.

F. Proof of Lemma 6: Consider a function of e, \( {w}_e\left( f\left({k}_0\right)-{k}_1\right)+\beta \overline{W}\left({k}_1\right) \). Let k 0 be given. Furthermore, both \( {\left\{{k}_t\right\}}_{t=1}^{\infty } \) and \( {\left\{{k}_t^{\prime}\right\}}_{t=1}^{\infty } \) are unique optimal solutions for e = τ and 1/β, respectively. Suppose that \( {k}_1^{\hbox{'}}>{k}_1 \). Then, by the uniqueness of an optimal solution,

$$ {w}_{\tau}\left( f\left({k}_0\right)-{k}_1\right)+\beta \overline{W}\left({k}_1\right)>{w}_{\tau}\left( f\left({k}_0\right)-{k}_1^{\prime}\right)+\beta \overline{W}\left({k}_1^{\prime}\right) $$
(34)

and

$$ \kern0.5em {w}_{1/\beta}\left( f\left({k}_0\right)-{k}_1^{\prime}\right)+\beta \overline{W}\left({k}_1^{\prime}\right)>{w}_{1/\beta}\left( f\left({k}_0\right)-{k}_1\right)+\beta \overline{W}\left({k}_1\right). $$
(35)

Combining (28) and (29),

$$ {w}_{\tau}\left( f\left({k}_0\right)-{k}_1\right)+{w}_{1/\beta}\left( f\left({k}_0\right)-{k}_1^{\prime}\right)>{w}_{\tau}\left( f\left({k}_0\right)-{k}_1^{\prime}\right)+{w}_{1/\beta}\left( f\left({k}_0\right)-{k}_1\right). $$
(36)

From definitions (12) and (13),

$$ \left(1/\beta -\tau \right)\left[ u\left({c}^o\left( f\left({k}_0\right)-{k}_1^{\prime}\right)\right)- u\left({c}^o\left( f\left({k}_0\right)-{k}_1\right)\right)\right]>0, $$
(37)

where u(c o(c)) is, by the proof of Lemma 2, increasing in c. Therefore, 1/β > τ implies that \( f\left({k}_0\right)-{k}_1^{\prime }> f\left({k}_0\right)-{k}_1 \). Hence, \( {k}_1>{k}_1^{\prime } \), which is a contradiction. Consequently, \( {k}_1\ge {k}_1^{\prime } \).

Suppose that \( {k}_1={k}_1^{\prime } \). Then the Euler equation,

$$ -{w}_e^{\prime}\left( f\left({k}_0\right)-{k}_1\right)+\beta {w}_{1/\beta}^{\prime}\left( f\left({k}_1\right)-{k}_2\right){f}^{\prime}\left({k}_1\right)=0, $$
(38)

must hold for e = τ , 1/β. However, by 1/β > τ and Property W3, it holds that \( {w}_{1/\beta}^{\prime}\left( f\left({k}_0\right)-{k}_1\right)>{w}_{\tau}^{\prime}\left( f\left({k}_0\right)-{k}_1\right) \). This contradicts the Euler equation above. Hence, \( {k}_1>{k}_1^{\prime } \) must hold. □.

G. Proof of Theorem 3: Let \( \widehat{K} \) be the set of positive initial capital stocks of two-sided altruistic stationary paths. Since an optimal solution \( {\left\{{\overline{k}}_t\right\}}_{t=0}^{\infty } \) from \( {\overline{k}}_0=\overline{k} \) where \( f\left(\overline{k}\right)=\overline{k}>0 \) satisfies \( {\overline{k}}_1<\overline{k} \) by Lemma 3, \( \overline{x}\equiv \sup \left\{\widehat{k}|\widehat{k}\in \widehat{K}\right\}<\overline{k} \) must be true.

Let \( {\left\{{k}_t\right\}}_{t=0}^{\infty } \) and \( {\left\{{k}_t^{\prime}\right\}}_{t=0}^{\infty } \) with \( {k}_0={k}_0^{\hbox{'}} \) be solutions of

$$ \underset{f\left({k}_0\right)\ge {k}_1\ge 0}{ \max}\left[{w}_{\tau}\left( f\left({k}_0\right)-{k}_1\right)+\beta \overline{W}\left({k}_1\right)\right] $$
(39)

and

$$ \underset{f\left({k}_0\right)\ge {k}_1\ge 0}{ \max}\left[{w}_{1/\beta}\left( f\left({k}_0\right)-{k}_1\right)+\beta \overline{W}\left({k}_1\right)\right], $$
(40)

respectively. If \( 0<{k}_0\left(={k}_0^{\prime}\right)<{k}^{\ast } \), \( {\left\{{k}_t^{\prime}\right\}}_{t=0}^{\infty } \) is monotonically increasing and converges to k by Theorem 2. Thus, \( {k}_0<{k}_1^{\prime } \) is true. Since \( {k}_1>{k}_1^{\prime } \) by Lemma 6, k 1 > k 0 holds. Hence, \( {k}_0< \inf \left\{\widehat{k}|\widehat{k}\in \widehat{K}\right\}\equiv \underset{\bar{\mkern6mu}}{x} \).

Consider a two-sided altruistic path \( {\left\{{x}_0^n\right\}}_{n=0}^{\infty } \) from \( {x}_0^0\in \left(0,\overline{k}\right) \). For each generation n, the optimal solution, \( {\left\{{x}_t^n\right\}}_{t=0}^{\infty } \), satisfies the Euler equation

$$ -{w}_{\tau}^{\prime}\left( f\left({x}_0^n\right)-{x}_1^n\right)+\beta {w}_{1/\beta}^{\prime}\left( f\left({x}_1^n\right)-{x}_2^n\right){f}^{\hbox{'}}\left({x}_1^n\right)=0. $$
(41)

Since \( {\left\{{x}_0^n\right\}}_{n=0}^{\infty } \) is a monotone sequence by Lemma 8 that lies in \( \left(0,\overline{k}\right) \), \( {x}_0^n \) converges to some \( \widehat{k}\in \left(0,\overline{k}\right) \). \( {x}_1^n\left(={x}_0^{n+1}\right) \) also converges to \( \widehat{k} \). Since \( \left({x}_0^n,{x}_1^n,{x}_2^n\right) \) satisfies the Euler equation, the limit as n → ∞ should also satisfy it. Therefore, \( {x}_2^n \) converges to some value \( {\widehat{k}}_2 \) satisfying

$$ -{w}_{\tau}^{\prime}\left( f\left(\widehat{k}\right)-\widehat{k}\right)+\beta {w}_{1/\beta}^{\prime}\left( f\left(\widehat{k}\right)-{\widehat{k}}_2\right){f}^{\hbox{'}}\left(\widehat{k}\right)=0. $$
(42)

This implies \( {\widehat{k}}_2=\widehat{k} \). Consequently, the two-sided altruistic path \( {\left\{{x}_0^n\right\}}_{n=0}^{\infty } \) converges to a two-sided altruistic stationary path \( \Big\{\widehat{k}, \) \( \widehat{k}, \) \( \widehat{k},\cdots \Big\} \). .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, T., Nishimura, K. Global convergence in an overlapping generations model with two-sided altruism. J Evol Econ 27, 1205–1220 (2017). https://doi.org/10.1007/s00191-017-0519-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00191-017-0519-3

Keywords

JEL classification

Navigation