Skip to main content

Advertisement

Log in

Bone fragility in men - where are we?

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

This is a summary of several aspects of the epidemiology, pathogenesis and treatment arising directly and indirectly from the proceedings of the Third International Osteoporosis in Men meeting held in Genoa in May 2005. Advances in the study of bone fragility in men have taken place, but many challenges remain.

Observations

Although the epidemiology of hip fractures is well documented, the epidemiology of other non-vertebral fractures is less well defined even though these fractures contribute substantially to the global burden of fractures in men. The epidemiology of vertebral fragility fractures is derived mostly from cross sectional data. The comparable prevalence of vertebral fractures in men and women is likely to be misleading because of traumatic vertebral fractures that arise in young men. Prospective studies are needed to define the proportion of these fractures that are traumatic. After the age of 50 years, the incidence of vertebral fractures in men is about one third to one half of that in women. As in women, most vertebral and non-vertebral fragility fractures occur in persons without osteoporosis. Identifying these individuals is an unmet challenge. The absolute risk for fractures appears no different by sex in men and women of the same age and bone mineral density (BMD) so that the diagnostic threshold for osteoporosis in women can be used in men. Fracture risk varies around the world and is unlikely to be explained solely by variations in BMD, though there are few data comparing men and women of different races. Both the notion that men lose less bone than women from the endosteal envelope and that they gain more on the periosteal envelope during advancing age needs reassessment as recent evidence challenges these observations. Sex differences in the net gain and loss from these surfaces are likely to be site specific, and research is needed to specify this heterogeneity and the reasons for it. The independent and co-dependent effects of sex hormones and the growth hormone/insulin like growth factor 1 axis on periosteal and endosteal modeling and remodeling during growth as well as ageing are poorly defined. The anti-fracture efficacy and safety of androgens and other agents remain incompletely investigated in men.

Conclusion

A great deal of research is needed to advance our understanding of bone fragility in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cooper C, Dennison EM, Leufkens HGM, Bishop N, Van Staa TP (2004) Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res 19:1976–1981

    Article  PubMed  Google Scholar 

  2. Johnell O, Kanis JA, Jonsson B, Oden A, Johansson H, De Laet C (2005) The burden of hospitalised fractures in Sweden. Osteoporos Int 16:222–228

    Article  PubMed  CAS  Google Scholar 

  3. Jiang HX, Majumdar SR, Dick DA, Moreau M, Raso J, Otto DD, Johnston DWC (2005) Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J Bone Miner Res 20:494–500

    Article  PubMed  CAS  Google Scholar 

  4. Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B, Oglesby AK (2003) The components of excess mortality after hip fracture. Bone 32:468–473

    Article  PubMed  CAS  Google Scholar 

  5. Khosla S, Lufkin EG, Hodgson SF, Fitzpatrick LA, Melton LJ (1994) Epidemiology and clinical-features of osteoporosis in young individuals. Bone 15:551–555

    Article  PubMed  CAS  Google Scholar 

  6. Orwoll ES, Klein RF (1995) Osteoporosis in men. Endocr Rev 16:87–116

    Article  PubMed  CAS  Google Scholar 

  7. Schuit SCE, van der Klift M, Weel AEAM, de Laet CEDH, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JPTM, Pols HAP (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  CAS  Google Scholar 

  8. Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD (2005) Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int 16:1184–1192

    Article  PubMed  Google Scholar 

  9. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Pierre D, Delmas PDD (2005) The identification of osteopenic women at high risk of fracture: the OFELY Study. J Bone Miner Res 20:1929–1943

    Article  PubMed  Google Scholar 

  10. Kanis JA, Johnell O, Oden A et al (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–995

    Article  PubMed  CAS  Google Scholar 

  11. Kanis JA, Oden A, Johnell O et al (2001) The burden of osteoporotic fractures: a method of setting intervention thresholds. Osteoporos Int 12:417–427

    Article  PubMed  CAS  Google Scholar 

  12. Kanis JA, Johnell O, Oden A et al (2005) Intervention thresholds for osteoporosis in men and women: a study based on data from Sweden. Osteoporos Int 16:6–14

    Article  PubMed  Google Scholar 

  13. Kanis JA, Borgstrom F, Zethraeus Z et al (2005) Intervention thresholds for osteoporosis in men and women. Bone 36:22–32

    Article  PubMed  Google Scholar 

  14. Duan Y, Turner CH, Kim BT, Seeman E (2001) Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 16:2267–2274

    Article  PubMed  CAS  Google Scholar 

  15. Duan Y, Beck TJ, Wang X-F, Seeman E (2003) Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 18:1766–1774

    Article  PubMed  Google Scholar 

  16. Wang XF, Duan Y, Beck T, Seeman ER (2005) Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old age. Bone 36:978–986

    Article  PubMed  Google Scholar 

  17. Seeman E (2003) Periosteal bone formation - a neglected determinant of bone strength. New Eng J Med 349:320–323

    Article  PubMed  Google Scholar 

  18. Ahlborg HG Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after the menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  19. Ruff CB, Trinkaus E, Walker A, Larsen CS (1993) Postcranial robusticity in Homo. 1: temporal trends and mechanical interpretation. Am J Phys Anthropol 91:21–53

    Article  PubMed  CAS  Google Scholar 

  20. Balena R, Shih M-S, Parfitt (1992) Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res 7:1475–1482

    Article  PubMed  CAS  Google Scholar 

  21. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) A population-based study of age and sex differences in bone volumetric density, size, geometry and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  22. Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, Peterson JM, Melton LJ 3rd (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131

    Article  PubMed  Google Scholar 

  23. Aaron JE, Makins NB, Sagreiy K (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin Orth RR 215:260–271

    Google Scholar 

  24. Araujo AB, O’Donnell AB, Brambilla DJ, Simpson WB, Longcope C, Matsumoto AM, McKinlay JB (2004) Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts male aging study. J Clin Endocrinol Metab 89:5920–5926

    Article  PubMed  CAS  Google Scholar 

  25. Bouillon R, Bex M, Vanderschueren D, Boonen S (2004) Estrogens are essential for male pubertal periosteal bone expansion. J Clin Endocrinol Metab 89:6025–6029

    Article  PubMed  CAS  Google Scholar 

  26. Khosla S, Melton LJ, Riggs BL (2002) Estrogen and the male skeleton. J Clin Endocrinol Metab 87:1443–1450

    Article  PubMed  CAS  Google Scholar 

  27. Khosla S, Melton LJ, Atkinson EJ, O’Fallon WM (2001) Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86:3555–3561

    Article  PubMed  CAS  Google Scholar 

  28. Khosla S, Riggs BL, Robb RA, Camp JJ, Achenbach SJ, Oberg AL, Rouleau PA, Melton LJ III (2005) Relationship of volumetric bone density and structural parameters at different skeletal sites to sex steroid levels in men. J Clin Endocrinol Metab 90:5096–5103

    Article  PubMed  CAS  Google Scholar 

  29. Orwoll ES (2003) Toward an expanded understanding of the role of the periosteum in skeletal helath. J Bone Miner Res 18:949–954

    Article  PubMed  Google Scholar 

  30. Sims NA, Dupont S, Krust A, Clement-LaCroix P, Minet D, Resche-Rigon M, Gaillard Kelly M, Baron R (2002) Deletion of estrogen receptors reveals a regulatory role for estrogen receptors beta in bone remodeling in females but not in males. Bone 30:18–25

    Article  PubMed  CAS  Google Scholar 

  31. Sims NA, Clement-Lacroix P, Minet D, Fraslon-Vanhulle C, Gaillard-Kelly M, Resche-Rigon M, Baron R (2003) A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J Clin Invest 111:1319–1327

    Article  PubMed  CAS  Google Scholar 

  32. Szulc P, Garnero P, Marchand F, Duboeuf F, Delmas PD (2005) Biochemical markers of bone formation reflect endosteal bone loss in elderly men-MINOS study. Bone 36:13–21

    Article  PubMed  CAS  Google Scholar 

  33. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA (2005) Bone resorption and osteoporotic fractures in elderly men: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res 20:579–587

    Article  PubMed  Google Scholar 

  34. Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, Adami S, Weber K, Lorenc R, Pietschmann P, Vandormael K, Lombardi A (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343:604–610

    Article  PubMed  CAS  Google Scholar 

  35. Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Risedronate sodium therapy for prevention of hip fracture in men 65 years or older after stroke. Arch Intern Med 165:1743–1748

    Article  PubMed  CAS  Google Scholar 

  36. Ringe JD, Faber H, Farahmand P, Dorst A (2005) Efficacy of risedronate in men with primary and secondary osteoporosis: results of a 1-year study. Rheumatol Int 7:1–5

    Google Scholar 

  37. Kurland ES, Cosman F, McMahon DJ, Rosen CJ, Lindsay R, Bilezikian JP (2000) Therapy of idiopathic osteoporosis in men with parathyroid hormone: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85:3069–3076

    Article  PubMed  CAS  Google Scholar 

  38. Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A, Kaufman J-M, Clancy AD, Gaich GA (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Min Res 18:9–17

    Article  CAS  Google Scholar 

  39. Kaufman J-M, Orwoll E, Goemaere S, San Martin J, Hossain A, Dalsky GP, Lindsay R, Mitlak BH (2005) Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int 16:510–516

    Article  PubMed  CAS  Google Scholar 

  40. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226

    Article  PubMed  CAS  Google Scholar 

  41. Kurland ES, Heller SL, Diamond B, McMahon DJ, Cosman F, Bilezikian JP (2004) The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1–34)]. Osteoporos Int 15:992–997

    Article  PubMed  CAS  Google Scholar 

  42. Amory JK, Watts NB, Easley KA, Sutton PR, Anawalt BD, Matsumoto AM, Bremner WJ, Tenover JL (2004) Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab 89:503–510

    Article  PubMed  CAS  Google Scholar 

  43. Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Holmes JH, Dlewati A, Staley J, JSantanna J, Kapoor SC, Attie MF, Haddad JG Jr (1999) Strom BL Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab 84:1966–1972

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Seeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeman, E., Bianchi, G., Khosla, S. et al. Bone fragility in men - where are we?. Osteoporos Int 17, 1577–1583 (2006). https://doi.org/10.1007/s00198-006-0160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0160-8

Keywords

Navigation