Skip to main content

Advertisement

Log in

Osteocytes—martyrs for integrity of bone strength

  • Hot Stuff
  • Published:
Osteoporosis International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Wolf J (1892) Das Gesetz der Transformation der Knochen. Berlin: Springer-Verlag

    Google Scholar 

  2. Frost HM (1963) Bone remodelling dynamics. Springfield, IL: Charles C Thomas

    Google Scholar 

  3. Currey JD (2002) Bones. Structure and Mechanics. Princeton UP, New Jersey, pp 1–380

    Google Scholar 

  4. Parfitt AM (1996) Skeletal heterogeneity and the purposes of bone remodelling: Implications for the understanding of osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. San Diego, CA: Academic 315–339

    Google Scholar 

  5. Orwoll ES (2003) Toward an expanded understanding of the role of the periosteum in skeletal helath. J Bone Miner Res 18:949–954

    Article  PubMed  Google Scholar 

  6. Lorenzo J (2000) Interactions between immune and bone cells: new insights with many remaining questions. J Clin Invest 106:749–752

    Article  CAS  PubMed  Google Scholar 

  7. Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue damage in vivo. J Bone Miner Res 15:60–67

    Article  CAS  PubMed  Google Scholar 

  8. Burger EH, Klein-Nulend J, Smit TH (2003) Strain-derived canalicular fluid flow regulates osteoclast activity in a remodeling osteon—a proposal. J Biomech 36:1453–1459

    Article  Google Scholar 

  9. Marotti G, Cane V, Palazzini S, Palumbo C (1990) Structure–function relationships in the osteocyte. Ital J Min Electro Metab 4:93–106

    Google Scholar 

  10. Bakker A, Klein-Nulend J, Burger E (2004) Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun 20:1163–1168

    Article  CAS  Google Scholar 

  11. Aarden EM, Burger EH, Nijweide PJ (1994) Function of osteocytes in bone. J Cell Biochem 55:287–299

    Article  CAS  PubMed  Google Scholar 

  12. Han Y, Cowin SC, Schaffler MB, Weinbaum S (2004) Mechanotransduction and strain amplification in osteocyte cell processes Proc Nat Acad Science 101:16689–16694

    Article  CAS  Google Scholar 

  13. Frost HM (1960) Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull 8:25–34

    Google Scholar 

  14. Hazenberg JG, Freeley M, Foran M, Lee TC, Taylor D (2006) Microdamage: a cell transducing mechanism based on ruptured osteocyte processes. J Biomechanics 39:2096–2103

    Article  Google Scholar 

  15. Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J (2005) Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res 20:809–816

    Article  PubMed  Google Scholar 

  16. Diab T, Vashisha D (2005) Effects of damage morphology on cortical bone fragility. Bone 37:96–102

    Article  CAS  PubMed  Google Scholar 

  17. Danova NA, Colopy SA, Radtke CL, Kalscheur VL, Markel MD, Vanderby R Jr, McCabe RP, Escarcega AJ, Muir P (2003) Degradation of bone structural properties by accumulation and coalescence of microcracks. Bone 33:197–205

    Article  CAS  PubMed  Google Scholar 

  18. Sumant PS, Maiti SK (2006) Crack detection in a beam using PZT sensors. Smart Mater Struct 15:695–703

    Article  Google Scholar 

  19. Landis WJ (2002) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 30:492–497

    Article  Google Scholar 

  20. Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. The University of Chicago Press, Chicago

    Google Scholar 

  21. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    Article  CAS  PubMed  Google Scholar 

  22. Ruppel ME, Burr DB, Miller LM (2006) Chemical makeup of micro-damaged bone differs from undamaged bone. Bone 39:318–324

    Article  CAS  PubMed  Google Scholar 

  23. Garnero P, Borel O, Gineyts E, Duboeuf F, Solberg H, Bouxsein ML, Christiansen C, Delmas PD (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38:300–309

    Article  CAS  PubMed  Google Scholar 

  24. Silva MJ, Brodt MD, Wopenka B, Thomopoulos S, Williams D, Wassen MHM, Ko M, Kusano N, Bank RA (2006) Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res 21:78–88

    Article  PubMed  Google Scholar 

  25. Diab T, Condon KW, Burr DB, Vashishth D (2006) Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone 38:427–431

    Article  PubMed  Google Scholar 

  26. Taylor D (1997) Bone maintenance and remodeling: a control system based on fatigue damage. J Orthop Res 15:601–606

    Article  CAS  PubMed  Google Scholar 

  27. Parfitt AM (2002) Targeted and non-targeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30:5–7

    Article  CAS  PubMed  Google Scholar 

  28. Schaffler MB, Majeska RJ (2005) Role of the osteocyte in mechanotransduction and skeletal fragility. Abst 20, p 12. Proceedings of meeting "Bone Quality: what is it and can we measure it?", Besthesda, Maryland May 2–3

  29. O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Steward SQ, Manolagas SC, Weinstein RS (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1841–1925

    Google Scholar 

  30. Manolagas SC (2006) Choreography from the tomb: an emerging role of dying osteocytes in the purposeful, and perhaps not so purposeful, targeting of bone remodeling. Bone Key Osteovision 3(1):5–14, January

    Google Scholar 

  31. Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Habelitz S, Kinney JH, Bonewald LF (2006) Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res 21:466–476

    Article  CAS  PubMed  Google Scholar 

  32. Qui S, Rao RD, Saroj I, Sudhaker 1, Palnitkar S, Parfitt AM (2003) Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res 18:1657–1663

    Article  Google Scholar 

  33. Qiu S, Rao DS, Fyhrie DP, Palnitkar S, Parfitt AM (2005) The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37:10–15

    Article  PubMed  Google Scholar 

  34. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2006) Differences in osteocyte and lacunar density between black and white American women. Bone 38:130–135

    Article  PubMed  Google Scholar 

  35. Clark WD, Smith EL, Linn KA, Paul-Murphy JR, Muir P, Cook ME (2005) Osteocyte apoptosis and osteoclast presence in chicken radii 0–4 days following osteotomy. Calcif Tissue Int 77:327–336

    Article  CAS  PubMed  Google Scholar 

  36. Kurata K, Heino TJ, Higaki H, Väänänen HK (2006) Bone marrow cell differentiation induced by mechanically damaged osteocytes in 3D gel-embedded culture. J Bone Miner Res 21:616–625

    Article  PubMed  Google Scholar 

  37. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615

    Article  PubMed  Google Scholar 

  38. Basso N and Heersche JN (2006) Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone Jun 8 (Epub ahead of print)

  39. Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37:148–158

    Article  CAS  PubMed  Google Scholar 

  40. Seeman E, Delmas PD (2006) Bone quality - the material and structural basis of bone strength and fragility. New Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  41. Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 10:13–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Seeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeman, E. Osteocytes—martyrs for integrity of bone strength. Osteoporos Int 17, 1443–1448 (2006). https://doi.org/10.1007/s00198-006-0220-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0220-0

Keywords

Navigation