Skip to main content
Log in

The spinal curvature irregularity index independently identifies vertebral fractures

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

The spinal curvature irregularity index (SCII) is a quantitative measure of the irregularity of the spinal curvature. We evaluated the predictive ability of SCII to identify subjects with vertebral fractures (VF).

Methods

Vertebral heights were measured by quantitative vertebral morphometry in 461 Lebanese women 20–89 years of age and VFs were ascertained by the grade 1 Eastell method. SCII scores were log-transformed and expressed as Z-SCII, the number of standard deviations above or below the mean ln(SCII) of young patients without VF. Univariate and multivariate binary logistic regression models were used to identify clinical predictors of VF.

Results

Women with a higher SCII were more likely to have prevalent VF. A higher SCII was associated with a greater prevalence of VF within each category of femoral neck BMD (normal, osteopenia, osteoporosis). In univariate analysis, predictors of VF included Z-SCII (odds ratio, OR: 2.21, 95% CI: 1.80–2.71) and femoral neck T-score (OR: 1.35, 95% CI: 1.12–1.63). In multivariate analysis, predictors of VF were: Z-SCII (OR: 1.54, 95% CI: 1.02–2.32), femoral neck T-score (OR: 1.41, 95% CI: 1.11–1.78) and age3 (OR: 1.40, 95% CI 1.10–1.82). At a cutoff SCII of 9.5%, the sensitivity and specificity of SCII for VF were 71 and 64% respectively, and higher SCII cutoffs identified VFs with greater specificity.

Conclusion

The SCII is a robust, simple and independent indicator of the presence of VFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Melton LJ III, Crowson CS, O’Fallon WM (1999) Fracture incidence in Olmsted County, Minnesota: comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int 9:29–37

    Article  PubMed  Google Scholar 

  2. Cooper C, O’Neill T, Silman A (1993) The epidemiology of vertebral fractures. Bone 14:S89–S97

    Article  PubMed  Google Scholar 

  3. O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ, The European Vertebral Osteoporosis Study Group (1996) The prevalence of vertebral deformity in European men and women: The European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018

    PubMed  CAS  Google Scholar 

  4. Davies KM, Stegman MR, Heaney RP, Recker RR (1996) Prevalence and severity of vertebral fracture: The Saunders County Bone Quality Study. Osteoporos Int 6:160–165

    Article  PubMed  CAS  Google Scholar 

  5. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822

    Article  PubMed  CAS  Google Scholar 

  6. Sanders KM, Nicholson GC, Watts JJ, Pasco JA, Henry MJ, Kotowicz MA, Seeman E (2006) Half the burden of fragility fractures in the community occur in women without osteoporosis: When is fracture prevention cost-effective? Bone 38:694–700

    Article  PubMed  Google Scholar 

  7. Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    PubMed  CAS  Google Scholar 

  8. Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126

    Article  PubMed  CAS  Google Scholar 

  9. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. J Bone Miner Res 14:821–828

    Article  PubMed  CAS  Google Scholar 

  10. Genant HK, Jergas M (2003) Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporos Int (Suppl 3):S43–S55

  11. Melton LJ, III, Egan KS, O’Fallon WM, Riggs BL (1998) Influence of fracture criteria on the outcome of a randomized trial of therapy. Osteoporos Int 8:184–191

    Article  PubMed  Google Scholar 

  12. Black DM, Palermo L, Nevitt MC, Genant HK, Christiansen L, Cummings SR (1999) Defining incident vertebral deformity: a prospective comparison of several approaches. J Bone Miner Res 14:90–101

    Article  PubMed  CAS  Google Scholar 

  13. Grados F, Roux C, de Vernejoul MC, Utard G, Sebert JL, Fardellone P (2001) Comparison of four morphometric definitions and a semiquantitative consensus reading for assessing prevalent vertebral fractures. Osteoporos Int 12:716–722

    Article  PubMed  CAS  Google Scholar 

  14. Lenchik L, Rogers LF, Delmas PD, Genant HK (2004) Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. Am J Roentgenol 183:949–958

    Google Scholar 

  15. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ III (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    Article  PubMed  CAS  Google Scholar 

  16. Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitometry 3:281–290

    Article  CAS  Google Scholar 

  17. Bagur A, Solis F, Di Gregorio S, Mautalen C (2000) Reference data of vertebral morphometry by X-ray absorptiometry (MXA) in Argentine women. Calcif Tissue Int 66:259–262

    Article  PubMed  CAS  Google Scholar 

  18. Blake GM, Rea JA, Fogelman I (1997) Vertebral morphometry studies using dual-energy X-ray absorptiometry. Semin Nucl Med 27:276–290

    Article  PubMed  CAS  Google Scholar 

  19. Duboeuf F, Bauer DC, Chapurlat RD, Dinten JMP, Delmas P (2005) Assessment of vertebral fracture using densitometric morphometry. J Clin Densitometry 8:362–368

    Article  CAS  Google Scholar 

  20. Edmonston SJ, Price RI, Valente B, Singer KP (1999) Measurement of vertebral body heights: ex vivo comparisons between morphometric X-ray absorptiometry, morphometric radiography and direct measurements. Osteoporos Int 10:7–13

    Article  Google Scholar 

  21. Ferrar L, Jiang G, Barrington NA, Eastell R (2000) Identification of vertebral deformities in women: comparison of radiological assessment and quantitative morphometry using morphometric radiography and morphometric x-ray absorptiometry. J Bone Miner Res 15:575–585

    Article  PubMed  CAS  Google Scholar 

  22. Rea JA, Chen MB, Li J, Marsh E, Fan B, Blake GM, Steiger P, Smith IG, Genant HK, Fogelman I (2001) Vertebral morphometry: a comparison of long-term precision of morphometric X-ray absorptiometry and morphometric radiography in normal and osteoporotic subjects. Osteoporos Int 12:158–166

    Article  PubMed  CAS  Google Scholar 

  23. Jacobs-Kosmin D, Sandorfi N, Murray H, Abruzzo JL (2005) Vertebral deformities identified by vertebral fracture assessment. J Clin Densitometry 8:267–272

    Article  Google Scholar 

  24. Rea JA, Chen MB, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Morphometric X-ray absorptiometry and morphometric radiography of the spine: a comparison of prevalent vertebral deformity identification. J Bone Miner Res 15:564–574

    Article  PubMed  CAS  Google Scholar 

  25. Zebaze RM, Maalouf G, Maalouf N, Seeman E (2004) Loss of regularity in the curvature of the thoracolumbar spine: a measure of structural failure. J Bone Miner Res 19:1099–1104

    Article  PubMed  Google Scholar 

  26. Maalouf G, Salem S, Sandid M, Attalah P, Eid J, Saliba N, Nehme I, Johnell O (2000) Bone mineral density of the Lebanese reference population. Osteoporos Int 11:756–764

    Article  PubMed  CAS  Google Scholar 

  27. Zebaze RM, Maalouf G, Wehbe J, Nehme A, Maalouf N, Seeman E (2004) The varying distribution of intra- and inter-vertebral height rations determines the prevalence of vertebral fractures. Bone 35:348–356

    Article  PubMed  Google Scholar 

  28. Minne HW, Leidig G, Wuster C, Siromachkostov L, Baldauf G, Bickel R, Sauer P, Lojen M, Zeigler R (1988) A newly developed spine deformity index (SDI) to quantitate vertebral crush fractures in patients with osteoporosis. Bone Miner 3:335–349

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Maalouf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maalouf, G., Maalouf, N.M., Schaaf, N. et al. The spinal curvature irregularity index independently identifies vertebral fractures. Osteoporos Int 18, 279–283 (2007). https://doi.org/10.1007/s00198-006-0235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0235-6

Keywords

Navigation