Skip to main content

Advertisement

Log in

Fractures during growth: potential role of a milk-free diet

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Dietary calcium deficiency may increase fracture risk. In girls, 29.4% of fracture cases and 11.8% of controls without fracture had a history of milk-free diet. The odds ratio (OR) for fracture with a milk-free diet in girls was 4.6, p < 0.01. In boys, 23% of cases and 19% of controls had a history of a milk-free diet; OR = 1.3, NS). A milk-free diet due to cow’s milk allergy is associated with increased fracture risk in girls.

Introduction

An intake of calcium below the reference daily intake (RDI) of 800–1200 mg/day during growth is thought to increase fracture risk even though convincing evidence for this view is scarce. The paucity of evidence may be partly due to many trial participants being calcium replete. Children and adolescents with cow’s milk allergy (CMA) avoid milk and have a calcium intake below the RDI. The aim of this study was to examine the association between consumption of a milk-free diet and fracture risk.

Methods

In this case-control study conducted in Poland, 57 boys and 34 girls aged 2.5–20 years with fractures (cases) were randomly matched by age and sex with 171 boys and 102 girls without fractures (controls). Weight and height were examined using standard methods. Bone mineral density (BMD) and body composition were measured using dual-energy X-ray absorptiometry. Conditional logistic regression and Bayesian analyses were used to determine the proportion of the fracture risk attributable to a milk-free diet.

Results

In girls, 29.4% of cases and 11.8% of controls had a history of milk-free diet producing an odds ratio (OR) for fracture associated with a milk-free diet of 4.6 (95% confidence interval [CI]: 1.4–15.5, p < 0.01). In boys, 23% of cases and 19% of controls had a history of a milk-free diet; OR = 1.3 (95% CI: 0.6–2.7, NS). If the prevalence of CMA in the population is 5%, only 6.7% of the fractures occurring are attributable to CMA and the associated nutritional deficit.

Conclusions

Cow’s milk allergy is associated with increased fracture risk in girls. Whether this association is due to the illness, calcium deficit or a deficit in other milk nutrients is uncertain. These data suggest that the contribution of milk-free diet to fracture liability among children and adolescents is modest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nordin BE (1997) Calcium and osteoporosis. Nutrition 13:664–686

    Article  PubMed  CAS  Google Scholar 

  2. Heaney RP (2000) Calcium, dairy products and osteoporosis. J Am Coll Nutr 19(2 Suppl):83S–99S

    PubMed  CAS  Google Scholar 

  3. Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EY, Crncevic-Orlic Z, Li B, Goel P (2004) Nutrition influences skeletal development from childhood to adulthood: a study of hip, spine, and forearm in adolescent females. J Nutr 134:701S–705S

    PubMed  Google Scholar 

  4. Johnston CC Jr, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M (1992) Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327:82–87

    Article  PubMed  Google Scholar 

  5. Nicklas TA (2003) Calcium intake trends and health consequences from childhood through adulthood. J Am Coll Nutr 22:340–356

    PubMed  CAS  Google Scholar 

  6. Valimaki MJ, Karkkainen M, Lamberg-Allardt C, Laitinen K, Alhava E, Heikkinen J, Impivaara O, Makela P, Palmgren J, Seppanen R et al (1994) Exercise, smoking, and calcium intake during adolescence and early adulthood as determinants of peak bone mass. Cardiovascular Risk in Young Finns Study Group. BMJ 309:230–235

    PubMed  CAS  Google Scholar 

  7. Pollitzer WS, Anderson JJ (1989) Ethnic and genetic differences in bone mass: a review with a hereditary vs environmental perspective. Am J Clin Nutr 50:1244–1259

    PubMed  CAS  Google Scholar 

  8. Ruiz JC, Mandel C, Garabedian M (1995) Influence of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. J Bone Miner Res 10:675–682

    Article  PubMed  CAS  Google Scholar 

  9. Goulding A, Rockell JEP, Black RE, Grant AM, Jones IE, Williams SM (2004) Children who avoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc 104:250–253

    Article  PubMed  Google Scholar 

  10. Yeh FJ, Grant AM, Williams SM, Goulding A (2006) Children who experience their first fracture at a young age have high rates of fracture. Osteoporos Int 17:267–272

    Article  PubMed  Google Scholar 

  11. Kanis JA, Johansson H, Oden A, De Laet C, Johnell O, Eisman JA, Mc Closkey E, Mellstrom D, Pols H, Reeve J, Silman A, Tenenhouse A (2005) A meta-analysis of milk intake and fracture risk: low utility for case finding. Osteoporos Int 16:799–804

    Article  PubMed  Google Scholar 

  12. Lanou AJ, Berkow SE, Barnard ND (2005) Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence. Pediatrics 115:736–743

    Article  PubMed  Google Scholar 

  13. Lee WT, Leung SS, Wang SH, Xu YC, Zeng WP, Lau J, Oppenheimer SJ, Cheng JC (1994) Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 60:744–750

    PubMed  CAS  Google Scholar 

  14. Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 99:1287–1294

    Article  PubMed  CAS  Google Scholar 

  15. Lloyd T, Andon MB, Rollings N, Martel JK, Landis JR, Demers LM, Eggli DF, Kieselhorst K, Kulin HE (1993) Calcium supplementation and bone mineral density in adolescent girls. JAMA 270:841–844

    Article  PubMed  CAS  Google Scholar 

  16. Du X, Zhu K, Trube A, Zhang Q, Ma G, Hu X, Fraser DR, Greenfield H (2004) School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10–12 years in Beijing. Br J Nutr 92:159–168

    Article  PubMed  CAS  Google Scholar 

  17. Lau EM, Lynn H, Chan YH, Lau W, Woo J (2004) Benefits of milk powder supplementation on bone accretion in Chinese children. Osteoporos Int 15:654–658

    Article  PubMed  CAS  Google Scholar 

  18. Lee WT, Leung SS, Leung DM, Cheng JC (1996) A follow-up study on the effects of calcium-supplement withdrawal and puberty on bone acquisition of children. Am J Clin Nutr 64:71–77

    PubMed  CAS  Google Scholar 

  19. Iuliano-Burns S, Wang XF, Evans A, Bonjour JP, Seeman E (2006) Skeletal benefits from calcium supplementation are limited in children with calcium intakes near 800 mg daily. Osteoporos Int 12:1794–1800

    Article  CAS  Google Scholar 

  20. Iuliano-Burns S, Stone J, Hopper JL, Seeman E (2005) Diet and exercise during growth have site-specific skeletal effects: a co-twin control study. Osteoporos Int 10:1225–1232

    Article  CAS  Google Scholar 

  21. Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R (2001) Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet 358:1208–1212

    Article  PubMed  CAS  Google Scholar 

  22. Chevalley T, Bonjour JP, Ferrari S, Hans D, Rizzoli R (2005) Skeletal site selectivity in the effects of calcium supplementation on areal bone mineral density gain: a randomized, double-blind, placebo-controlled trial in prepubertal boys. J Clin Endocrinol Metab 90:3342–3349

    Article  PubMed  CAS  Google Scholar 

  23. Ma D, Jones G (2004) Soft drink and milk consumption, physical activity, bone mass, and upper limb fractures in children: a population-based case-control study. Calcif Tissue Int 75:286–291

    Article  PubMed  CAS  Google Scholar 

  24. Kalkwarf HJ, Khoury JC, Lanphear BP (2003) Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr 77:257–265

    PubMed  CAS  Google Scholar 

  25. Specker B, Binkley T (2003) Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res 18:885–892

    Article  PubMed  CAS  Google Scholar 

  26. Molgaard C, Thomsen BL, Michaelsen KF (2004) Effect of habitual dietary calcium intake on calcium supplementation in 12-14-y-old girls. Am J Clin Nutr 80:1422

    PubMed  CAS  Google Scholar 

  27. Merrilees MJ, Smart EJ, Gilchrist NL, Frampton C, Turner JG, Hooke E, March RL, Maguire P (2000) Effects of diary food supplements on bone mineral density in teenage girls. Eur J Nutr 39:256–262

    Article  PubMed  CAS  Google Scholar 

  28. Hidvegi E, Arato A, Cserhati E, Horvath C, Szabo A, Szabo A (2003) Slight decrease in bone mineralization in cow milk-sensitive children. J Pediatr Gastroenterol Nutr 36:44–49

    Article  PubMed  Google Scholar 

  29. Rockell JE, Williams SM, Taylor RW, Grant AM, Jones IE, Goulding A (2005) Two-year changes in bone and body composition in young children with a history of prolonged milk avoidance. Osteoporos Int 16:1016–1023

    Article  PubMed  CAS  Google Scholar 

  30. Kanis JA, Passmore R (1989) Calcium supplementation of the diet-I. BMJ 298:137–140

    Article  PubMed  CAS  Google Scholar 

  31. Cheng S, Lyytikainen A, Kroger H, Lamberg-Allardt C, Alen M, Koistinen A, Wang QJ, Suuriniemi M, Suominen H, Mahonen A, Nicholson PH, Ivaska KK, Korpela R, Ohlsson C, Vaananen KH, Tylavsky F (2005) Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10-12-y-old girls: a 2-y randomized trial. Am J Clin Nutr 82:1115–1126

    PubMed  CAS  Google Scholar 

  32. Kunachowicz H, Nadolna I, Przygoda B, Iwanow K (1998) Food composition tables. National Food and Nutrition Institute, Warsaw

    Google Scholar 

  33. Szotowa W, Socha J, Charzewska J, Dluzniewska K, Jablonski E, Kunachowicz H, Rudzka-Kantoch Z, Ryzko J, Stolarczyk A, Weker H (1995) Daily nutritional recommendations for children and adolescents. Pediatr Pol 70:suppl 1–12

    CAS  Google Scholar 

  34. Henriksen C, Eggesbo M, Halvorsen R, Botten G (2000) Nutrient intake among two-year-old children on cows’ milk-restricted diets. Acta Paediatr 89:272–278

    Article  PubMed  CAS  Google Scholar 

  35. Madsen CD, Henderson RC (1997) Calcium intake in children with positive IgG RAST to cow’s milk. J Paediatr Child Health 33:209–212

    Article  PubMed  CAS  Google Scholar 

  36. Cologne JB, Shibata Y (1995) Optimal case-control matching in practice. Epidemiology 6:271–275

    Article  PubMed  CAS  Google Scholar 

  37. Rockett HR, Wolf AM, Colditz GA (1995) Development and reproducibility of a food frequency questionnaire to assess diets of older children and adolescents. J Am Diet Assoc 95:336–344

    Article  PubMed  CAS  Google Scholar 

  38. Rockett HR, Colditz GA (1997) Assessing diets of children and adolescents. Am J Clin Nutr 65(Suppl):1116S–1122S

    PubMed  CAS  Google Scholar 

  39. King G, Zeng L (2002) Estimating risk and rate levels, ratios and differences in case-control studies. Stat Med 21:1409–1427

    Article  PubMed  Google Scholar 

  40. Black RE, Williams SM, Jones IE, Goulding A (2002) Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr 76:675–680

    PubMed  CAS  Google Scholar 

  41. Henderson RC, Hayes PR (1994) Bone mineralization in children and adolescents with a milk allergy. Bone Miner 27:1–12

    Article  PubMed  CAS  Google Scholar 

  42. Stallings VA, Oddleifson NW, Negrini BY, Zemel BS, Wellens R (1994) Bone mineral content and dietary calcium intake in children prescribed a low-lactose diet. J Pediatr Gastroenterol Nutr 18:440–445

    Article  PubMed  CAS  Google Scholar 

  43. Infante D, Tormo R (2000) Risk of inadequate bone mineralization in diseases involving long-term suppression of dairy products. J Pediatr Gastroenterol Nutr 30:310–313

    Article  PubMed  CAS  Google Scholar 

  44. Crittenden RG, Bennett LE (2005) Cow’s milk allergy: a complex disorder. J Am Coll Nutr 24(6 Suppl):582S–591S

    PubMed  CAS  Google Scholar 

  45. Host A (2002) Frequency of cow’s milk allergy in childhood. Ann Allergy Asthma Immunol 89(6 Suppl 1):33–37

    PubMed  Google Scholar 

  46. Munoz KA, Krebs-Smith SM, Ballard-Barbash R, Cleveland LE (1997) Food intakes of US children and adolescents compared with recommendations. Pediatrics 100(3 Pt 1):323–329

    Article  PubMed  CAS  Google Scholar 

  47. Chan GM (1991) Dietary calcium and bone mineral status of children and adolescents. Am J Dis Child 145:631–634

    PubMed  CAS  Google Scholar 

  48. Chwojnowska Z, Charzewska J, Chabros E, Wajszczyk B, Rogalska-Niedzwiedz M, Jarosz B (2002) Contents of calcium and phosphorus in the diet of youth from Warsaw elementary schools. Rocz Panstw Zakl Hig 53:157–165

    PubMed  CAS  Google Scholar 

  49. Harel Z, Riggs S, Vaz R, White L, Menzies G (1998) Adolescents and calcium: what they do and do not know and how much they consume. J Adolesc Health 22:225–228

    Article  PubMed  CAS  Google Scholar 

  50. Rajeshwari R, Nicklas TA, Yang SJ, Berenson GS (2004) Longitudinal changes in intake and food sources of calcium from childhood to young adulthood: the Bogalusa heart study. J Am Coll Nutr 23:341–350

    PubMed  CAS  Google Scholar 

  51. Kanis JA, Johnell O, Oden A, Johansson H, De Laet C, Eisman JA, Fujiwara S, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162

    Article  PubMed  CAS  Google Scholar 

  52. Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EM (2000) Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr 71:544–549

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Konstantynowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantynowicz, J., Nguyen, T.V., Kaczmarski, M. et al. Fractures during growth: potential role of a milk-free diet. Osteoporos Int 18, 1601–1607 (2007). https://doi.org/10.1007/s00198-007-0397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0397-x

Keywords

Navigation