Skip to main content
Log in

Bone health and back pain: What do we know and where should we go?

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Bone health is generally not considered in patients who present with chronic back pain. Nonetheless, bone health and back pain share common genetic and environmental correlates suggesting a co-dependence. Evidence exists for a relationship between back pain and impaired bone health. Here we present the evidence, theoretic framework and clinical relevance.

Bone health and back pain are important determinants of musculoskeletal health. Back pain experienced in youth is a risk factor for future back pain, while suboptimal bone health during development increases the risk of skeletal fragility in later life. Generally, bone health is not considered in patients with chronic back pain who do not demonstrate other well-recognised bone health risk factors or associated conditions. Nonetheless, evidence suggests that back pain and impaired bone health share common environmental and genetic correlates, indicating that bone health ought to be considered in the context of back pain in otherwise healthy individuals. This review describes the likely mechanisms explaining the relationship between back pain and impaired bone health, evidence concerning the relationship and suggestions for future research. A narrative literature search was conducted using CINAHL, Medline, PubMed and Web of Science electronic databases. A history of back pain is associated with decreased bone mineral density in adults, yet this tends to be site-specific. No studies were identified examining this association in youth, yet the negative effects of childhood skeletal trauma and obesity on bone and spinal health provide indirect evidence for an association. Further research is required to clarify the impact of back pain on bone health at different lifespan stages using prospective cohort designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kleerekoper M, Nelson DA (1997) Which bone density measurement? J Bone Miner Res 12:712–14

    PubMed  CAS  Google Scholar 

  2. NIH Consensus Development Panel (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–95

    Google Scholar 

  3. Bakker I, Twisk JW, Van Mechelen W et al (2003) Ten-year longitudinal relationship between physical activity and lumbar bone mass in (young) adults. J Bone Miner Res 18:325–32

    PubMed  Google Scholar 

  4. Anderson JJB, Rondano PA (1996) Peak bone mass development of females: Can young adult women improve their peak bone mass? J Amer Coll Nutrit 15:570–74

    CAS  Google Scholar 

  5. Delvaux K, Lefevre J, Philippaerts R et al (2001) Bone mass and lifetime physical activity in Flemish males: a 27-year follow-up study. Med Sci Sport Exer 33:1868–75

    CAS  Google Scholar 

  6. Kemper HCG, Twisk JWR, van Mechelen W et al (2000) A fifteen-year longitudinal study in young adults on the relation of physical activity and fitness with the development of the bone mass: The Amsterdam Growth and Health Longitudinal Study. Bone 27:847–53

    PubMed  CAS  Google Scholar 

  7. Bouxsein ML, Uchiyama T, Rosen CJ et al (2004) Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. J Bone Miner Res 19:587–99

    PubMed  CAS  Google Scholar 

  8. Lei SF, Jiang H, Deng FY et al (2007) Searching for genes underlying susceptibility to osteoporotic fracture: current progress and future prospect. Osteoporos Int 18:1157–75

    PubMed  Google Scholar 

  9. Australian Institute of Health & Welfare. Australia’s Health (2006) The tenth biennial health report of the Australian Institute of Health and Welfare. Canberra, AIHW

    Google Scholar 

  10. Seeman E, Eisman JA (2004) MJA Practice Essentials. 7: Endocrinology—treatment of osteoporosis: why, whom, when and how to treat. Med J Aust 180:298–303

    PubMed  Google Scholar 

  11. Engelke K, Kemmler W, Lauber D et al (2006) Exercise maintains bone density at spine and hip EFOPS: a 3-year longitudinal study in early postmenopausal women. Osteoporos Int 17:133–42

    PubMed  CAS  Google Scholar 

  12. Berard A, Bravo G, Gauthier P (1997) Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int 7:331–37

    PubMed  CAS  Google Scholar 

  13. Wong PKK, Christie JJ, Wark JD (2007) The effects of smoking on bone health. Clin Sci 113:233–41

    PubMed  CAS  Google Scholar 

  14. Lippuner K, Haller B, Casez JP et al (1996) Effect of disodium monofluorophosphate, calcium and vitamin D supplementation on bone mineral density in patients chronically treated with glucocorticosteroids: a prospective, randomized, double-blind study. Miner Electrol Metabol 22:207–13

    CAS  Google Scholar 

  15. Rapuri PB, Gallagher JC, Haynatzka V (2003) Protein intake: effects on bone mineral density and the rate of bone loss in elderly women. Amer J Clin Nutrit 77:1517–25

    CAS  Google Scholar 

  16. Bachrach LK (2001) Acquisition of optimal bane mass in childhood and adolescence. Trends Endocrinol Metabol 12:22–28

    CAS  Google Scholar 

  17. Walker BF, Muller R, Grant WD (2003) Low back pain in Australian adults: the economic burden. Asia Pacific J Pub Health 15:79–87

    CAS  Google Scholar 

  18. Walker BF, Muller R, Grant WD (2004) Low back pain in Australian adults. Prevalence and associated disability. J Manip Physiol Therap 27:238–44

    Google Scholar 

  19. Cassidy JD, Carroll LJ, Cote P (1998) The Saskatchewan Health and Back Pain Survey: the prevalence of low back pain and related disability in Saskatchewan adults. Spine 23:1860–7

    PubMed  CAS  Google Scholar 

  20. Schmidt CO, Raspe H, Pfingsten M et al (2007) Back pain in the German adult population—prevalence, severity, and sociodemographic correlates in a multiregional survey. Spine 32:2005–11

    PubMed  Google Scholar 

  21. Wedderkopp N, Leboeuf-Yde C, Andersen LB et al (2001) Back pain reporting pattern in a Danish population-based sample of children and adolescents. Spine 26:1879–83

    PubMed  CAS  Google Scholar 

  22. Leboeuf-Yde C, Kyvik KO (1998) At what age does low back pain become a common problem? A study of 29,424 individuals aged 12–41 years. Spine 23:228–34

    PubMed  CAS  Google Scholar 

  23. Taimela S, Kujala UM, Salminen JJ et al (1997) The prevalence of low back pain among children and adolescents—a nationwide, cohort-based questionnaire survey in Finland. Spine 22:1132–36

    PubMed  CAS  Google Scholar 

  24. McMeeken J, Tully E, Stillman B et al (2001) The experience of back pain in young Australians. Man Ther 6:213–20

    PubMed  CAS  Google Scholar 

  25. O'Sullivan PB, Straker L, Smith AL et al (2008) Carer experience of back pain is associated with adolescent back pain experience when controlling for other carer and family factors. Clin J Pain 24:226–31

    PubMed  Google Scholar 

  26. Jeffries LJ, Milanese SF, Grimmer-Somers KA (2007) Epidemiology of adolescent spinal pain. A systematic overview of the research literature. Spine 32:2630–37

    PubMed  Google Scholar 

  27. Watson KD, Papageorgiou AC, Jones GT et al (2002) Low back pain in schoolchildren: occurrence and characteristics. Pain 97:87–92

    PubMed  Google Scholar 

  28. Hakala P, Rimpela A, Salminen JJ et al (2002) Back, neck and shoulder pain in Finnish adolescents: National cross sectional surveys. BMJl 325:743–45

    Google Scholar 

  29. Bailey DA, McKay HA, Mirwald RL et al (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan bone mineral accrual study. J Bone Miner Res 14:1672–79

    PubMed  CAS  Google Scholar 

  30. Bailey DA, Martin AD, McKay HA et al (2000) Calcium accretion in girls and boys during puberty: A longitudinal analysis. J Bone Miner Res 15:2245–50

    PubMed  CAS  Google Scholar 

  31. Young D, Hopper JL, Nowson CA et al (1995) Determinants of bone mass in 10- to 26-year old females: a twin study. J Bone Miner Res 10:558–67

    Article  PubMed  CAS  Google Scholar 

  32. Sjolie AN (2004) Persistence in changes in nonspecific low back pain among adolescents. A 3-year prospective study. Spine 29:2452–57

    PubMed  Google Scholar 

  33. Hestbaek L, leboeuf-Yde C, Kyvik KO et al (2006) The course of low back pain from adolescence to adulthood. Eight year follow-up of 9600 twins. Spine 31:468–72

    PubMed  Google Scholar 

  34. Brattberg G (2004) Do pain problems in young school children persist into early adulthood? A 13-year follow-up. Eur J Pain 8:187–99

    PubMed  Google Scholar 

  35. Jones GT, Macfarlane GJ (2005) Epidemiology of low back pain in children and adolescents. Arch Dis Childhood 90:312–16

    CAS  Google Scholar 

  36. Briggs AM, Greig AM, Wark JD (2007) The vertebral fracture cascade in osteoporosis. A review of aetiopathogenesis. Osteoporos Int 18:575–84

    PubMed  CAS  Google Scholar 

  37. Kado DM, Prenovost K, Crandall C (2007) Narrative review: hyperkyphosis in older persons. Ann Int Med 147:330–38

    PubMed  Google Scholar 

  38. Jones G, Nguyen T, Sambrook PN et al (1995) A longitudinal study of the effect of spinal degenerative disease on bone density in the elderly. J Rheumatol 22:932–36

    PubMed  CAS  Google Scholar 

  39. Folman Y, Shabat S, Gepstein R (2004) Relationship between low back pain in post-menopausal women and mineral content of lumbar vertebrae. Arch Gerontol Geriat 39:157–62

    Google Scholar 

  40. Nicholson PHF, Haddaway MJ, Davie MWJ et al (1993) Vertebral deformity, bone mineral density, back pain and height loss in unscreened women over 50 years. Osteoporos Int 3:300–07

    PubMed  CAS  Google Scholar 

  41. Walker-Bone K, Cooper C, Syddall H et al (2005) Bone mineral density is an independent risk factor for back pain and sciatica among men aged 60–70 years. Rheumatology 44:I111

    Google Scholar 

  42. COST B13 Working Group on Guidelines for Chronic Low Back Pain. European Guidelines for the management of chronic non-specific low back pain: COST B13

  43. Koes BW, van Tulder MW, Ostelo R et al (2001) Clinical guidelines for the management of low back pain in primary care—an international comparison. Spine 26:2504–13

    PubMed  CAS  Google Scholar 

  44. Khan K, McKay H, Kannus P et al (2001) Physical activity and bone health. Champaign, IL: Human Kinetics

    Google Scholar 

  45. Smeets R, Wittink H, Hidding A et al (2006) Do patients with chronic low back pain have a lower level of aerobic fitness than healthy controls? Are pain, disability, fear of injury, working status, or level of leisure time activity associated with the differences in aerobic fitness level? Spine 31:90–97

    PubMed  Google Scholar 

  46. Verbunt JA, Seelen HA, Vlaeyen JW et al (2003) Disuse and deconditioning in chronic low back pain: concepts and hypotheses on contributing mechanisms. Eur J Pain 7:9–21

    PubMed  Google Scholar 

  47. Bousema EJ, Verbunt JA, Seelen HAM et al (2007) Disuse and physical deconditioning in the first year after the onset of back pain. Pain 130:279–86

    PubMed  Google Scholar 

  48. Thomas JS, France CR (2007) Pain-related fear is associated with avoidance of spinal motion during recovery from low back pain. Spine 32:E460–E66

    PubMed  Google Scholar 

  49. Shum GLK, Crosbie J, Lee RYW (2007) Movement coordination of the lumbar spine and hip during a picking up activity in low back pain subjects. Eur Spine J 16:749–58

    PubMed  Google Scholar 

  50. Dieën JHV, Cholewicki J, Radebold A (2003) Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine 28:834–41

    PubMed  Google Scholar 

  51. Mok NW, Brauer SG, Hodges PW (2007) Failure to use movement in postural strategies leads to increased spinal displacement in low back pain. Spine 32:E537–E43

    PubMed  Google Scholar 

  52. Leboeuf-Yde C (1999) Smoking and low back pain—a systematic literature review of 41 journal articles reporting 47 epidemiologic studies. Spine 24:1463–70

    PubMed  CAS  Google Scholar 

  53. Goldberg MS, Scott SC, Mayo NE (2000) A review of the association between cigarette smoking and the development of nonspecific back pain and related outcomes. Spine 25:995–1014

    PubMed  CAS  Google Scholar 

  54. Iwahashi M, Matsuzaki H, Tokuhashi Y et al (2002) Mechanisms of intervertebral disc degeneration caused by nicotine in rabbits to explicate intervertebral disc disorders caused by smoking. Spine 27:1396–401

    PubMed  Google Scholar 

  55. Leboeuf-Yde C, Kyvik KO, Bruun NH (1999) Low back pain and lifestyle. Part II—Obesity—information from a population-based sample of 29,424 twin subjects. Spine 24:779–83

    PubMed  CAS  Google Scholar 

  56. MacInnis RJ, Cassar C, Nowson CA et al (2003) Determinants of bone density in 30 to 65 year-old women: a co-twin study. J Bone Miner Res 18:1650–56

    PubMed  CAS  Google Scholar 

  57. Zhao LJ, Jiang H, Papasian CJ et al (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29

    PubMed  CAS  Google Scholar 

  58. Nunez NP, Carpenter CL, Perkins SN et al (2007) Extreme obesity reduces bone mineral density: complementary evidence from mice and women. Obesity 15:1980–87

    PubMed  CAS  Google Scholar 

  59. Goulding A, Taylor RW, Jones IE et al (2002) Spinal overload: a concern for obese children and adolescents? Osteoporos Int 13:835–40

    PubMed  CAS  Google Scholar 

  60. Goulding A, Taylor RW, Jones IE et al (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obesity 24:627–32

    CAS  Google Scholar 

  61. Zhao LJ, Liu YJ, Liu PY et al (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metabol 92:1640–46

    CAS  Google Scholar 

  62. Tang ZH, Xiao P, Lei SF et al (2007) A bivariate whole-genome linkage scan suggests several shared genomic regions for obesity and osteoporosis. J Clin Endocrinol Metabol 92:2751–57

    CAS  Google Scholar 

  63. Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8

    PubMed  CAS  Google Scholar 

  64. Liuke M, Solovieva S, Lamminen A et al (2005) Disc degeneration of the lumbar spine in relation to overweight. Int J Obesity 29:903–08

    CAS  Google Scholar 

  65. Simpson EK, Parkinson IH, Manthey B et al (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–87

    PubMed  CAS  Google Scholar 

  66. Kjaer P, Leboeuf-Yde C, Korsholm L et al (2005) Magnetic resonance imaging and low back pain in adults: a diagnostic imaging study of 40-year-old men and women. Spine 30:1173–80

    PubMed  Google Scholar 

  67. Sambrook PN, MacGregor AJ, Spector TD (1999) Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis & Rheumatism 42:366–72

    CAS  Google Scholar 

  68. Battie MC, Videman T, Levalahti E et al (2007) Heritability of low back pain and the role of disc degeneration. Pain 131:272–80

    PubMed  Google Scholar 

  69. Elfering A, Semmer N, Birkhofer D et al (2002) Young Investigator Award 2001 winner: Risk factors for lumbar disc degeneration—a 5-year prospective MRI study in asymptomatic individuals. Spine 27:125–34

    PubMed  Google Scholar 

  70. van Dieën JH, Weinans H, Toussaint HM (1999) Fractures of the lumbar vertebral endplate in the etiology of low back pain: a hypothesis on the causative role of spinal compression in aspecific low back pain. Med Hypoth 53:246–52

    Google Scholar 

  71. Modic MT, Steinberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–99

    PubMed  CAS  Google Scholar 

  72. Kjaer P, Korsholm L, Bendix T et al (2006) Modic changes and their associations with clinical findings. Eur Spine J 15:1312–19

    PubMed  Google Scholar 

  73. Kuisma M, Karppinen J, Niinimaki J et al (2007) Modic changes in endplates of lumbar vertebral bodies—prevalence and association with low back and sciatic pain among middle-aged male workers. Spine 32:1116–22

    PubMed  Google Scholar 

  74. Albert HB, Manniche C (2007) Modic changes following lumbar disc herniation. Eur Spine J 16:977–82

    PubMed  Google Scholar 

  75. Arana E, Marti-Bonmati L, Vega M et al (2006) Relationship between low back pain, disability, MR imaging findings and health care provider. Skeletal Radiol 35:641–47

    PubMed  Google Scholar 

  76. El-Metwally A, Mikkelsson M, Stahl M et al (2008) Genetic and environmental influences on non-specific low back pain in children: a twin study. Eur Spine J 17:502–08

    PubMed  Google Scholar 

  77. Hestbaek L, Iachine IA, Leboeuf-Yde C et al (2004) Heredity of low back pain in a young population: a classical twin study. Twin Research 7:16–26

    PubMed  Google Scholar 

  78. MacGregor AJ, Andrew T, Sambrook PN et al (2004) Structural, psychological, and genetic influences on low back and neck pain: a study of adult female twins. Arthritis Rheum 51:160–67

    PubMed  Google Scholar 

  79. Bengtsson B, Thorson J (1991) Back pain: a study of twins. Acta Genet Med Gemellol 40:83–90

    PubMed  CAS  Google Scholar 

  80. Hartvigsen J, Christensen K, Frederiksen H et al (2004) Genetic and environmental contributions to back pain in old age—a study of 2,108 Danish twins aged 70 and older. Spine 29:897–901

    PubMed  Google Scholar 

  81. Videman T, Gibbons LE, Battie MC et al (2001) The relative roles of intragenic polymorphisms of the vitamin D receptor gene in lumbar spine degeneration and bone density. Spine 26:E7–E12

    PubMed  CAS  Google Scholar 

  82. Zhao LJ, Guo YF, Xiong DH et al (2006) Is a gene important for bone resorption a candidate for obesity? An association and linkage study on the RANK (receptor activator of nuclear factor-kappa B) gene in a large Caucasian sample. Human Genetics 120:561–70

    PubMed  CAS  Google Scholar 

  83. Battie MC, Levalahti E, Videman T et al (2007) Heritability of lumbar flexibility and the role of disc generation and body weight. J Appl Physiol 104:379–385

    PubMed  Google Scholar 

  84. Williams FM, Manek NJ, Sambrook PN et al (2007) Schmorl’s nodes: common, highly heritable, and related to lumbar disc disease. Arthritis Rheum 57:855–60

    PubMed  CAS  Google Scholar 

  85. Coehlo R, Silva C, Maia A et al (1999) Bone mineral density and depression: a community study in women. J Psychosomatic Res 46:29–35

    Google Scholar 

  86. Altindag O, Altindag A, Asoglu M et al (2007) Relation of cortisol levels and bone mineral density among premenopausal women with major depression. Int J Clin Prac 61:416–20

    CAS  Google Scholar 

  87. Jacka FN, Pasco JA, Henry MJ et al (2005) Depression and bone mineral density in a community sample of perimenopausal women: Geelong Osteoporosis Study. Menopause: J North Amer Menopause Soc 12:88–91

    Google Scholar 

  88. Michelson D, Stratakis C, Hill L et al (1996) Bone mineral density in women with depression. New Engl J Med 335:1176–81

    PubMed  CAS  Google Scholar 

  89. Ekenstam E, Stalenheim G, Hallgren R (1988) The acute effect of high dose corticosteroid treatment on serum osteocalcin. Metabolism 37:141–44

    PubMed  CAS  Google Scholar 

  90. Manabe T, Takasugi S, Iwamoto Y (2003) Positive relationship between bone mineral density and low back pain in middle-aged women. Eur Spine J 12:596–601

    PubMed  Google Scholar 

  91. Schlenker RA, Von Seggen WW (1976) The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurements. Calcif Tiss Int 20:41–52

    CAS  Google Scholar 

  92. Erdogan B, Bagis T, Sen O et al (2003) Effects of lumbar disc surgery on bone mineral density in women with lumbar disc disease. Advances in Ther 20:114–20

    Google Scholar 

  93. Bergenudd H, Nilsson B, Uden A et al (1989) Bone mineral content, gender, body posture and build in relation to back pain in middle age. Spine 14:577–79

    PubMed  CAS  Google Scholar 

  94. Haara MM, Arokoski JPA, Kroger H et al (2007) Relative bone mineral density measured by metacarpal index (MCI) and chronic spinal syndromes: an epidemiological study. Scand J Rheumatol 36:466–69

    PubMed  CAS  Google Scholar 

  95. O’Sullivan PB (2005) Diagnosis and classification of chronic low back pain disorders: maladaptive movement and motor control impairments as underlying mechanisms. Man Ther 10:242–55

    PubMed  Google Scholar 

  96. Gaber T, McGlashan KA, Love S et al (2002) Bone density in chronic low back pain: a pilot study. Clin Rehab 16:867–70

    CAS  Google Scholar 

  97. Ho SC, Chan S, Yip V et al (2002) A longitudinal study of low back pain and changes of spinal bone mineral density in Chinese perimenopausal women. J Bone Miner Res 17:S362–S62

    Google Scholar 

  98. Kalkwarf HJ, Specker BL (2002) Bone mineral changes during pregnancy and lactation. Endocrine 17:49–53

    PubMed  CAS  Google Scholar 

  99. Bjorklund K, Naessen T, Nordstrom ML et al (1999) Pregnancy-related back and pelvic pain and changes in bone density. Acta Obstet Gynecol Scand 78:681–85

    PubMed  CAS  Google Scholar 

  100. Promislow JHE, Hertz-Picciotto I, Schramm M et al (2004) Bed rest and other determinants of bone loss during pregnancy. Am J Obstet Gynecol 191:1077–83

    PubMed  Google Scholar 

  101. Jarvinen M, Kannus P (1997) Current concepts review: injury of an extremity as a risk factor for the development of osteoporosis. J Bone Joint Surg (American) 79:263–76

    CAS  Google Scholar 

  102. Jensen B, Wittrup IH, Bliddal H et al (2003) Bone mineral density in fibromyalgia patients—correlation to disease activity. Scand J Rheumatol 32:146–50

    PubMed  CAS  Google Scholar 

  103. Kroger H, Honkanen R, Saarikoski S et al (1994) Decreased axial bone mineral density in perimenopausal women with rheumatoid arthritis. A population based study. Ann Rheum Dis 53:18–23

    PubMed  CAS  Google Scholar 

  104. Arriagada M, Arinoviche R (1994) X-ray bone densitometry in the diagnosis and follow-up of reflex sympathetic dystrophy syndrome. J Rheumatol 21:498–500

    PubMed  CAS  Google Scholar 

  105. Karacan I, Aydin T, Ozaras N (2004) Bone loss in the contralateral asymptomatic hand in patients with complex regional pain syndrome type 1. J Bone Miner Metabol 22:44–47

    Google Scholar 

  106. Whiteside GT, Boulet JM, Sellers R et al (2006) Neuropathy-induced osteopenia in rats is not due to a reduction in weight born on the affected limb. Bone 38:387–93

    PubMed  CAS  Google Scholar 

  107. Bogdanffy GM, Ohnmeiss DD, Guyer RD (1995) Early changes in bone mineral density above a combined anteroposterior L4–S1 lumbar spinal fusion. A clinical investigation. Spine 20:1674–78

    PubMed  CAS  Google Scholar 

  108. Jones IE, Taylor RW, Williams SM et al (2002) Four-year gain in bone mineral in girls with and without past forearm fractures: A DXA study. J Bone Miner Res 17:1065–72

    PubMed  Google Scholar 

  109. Leppala J, Kannus P, Niemi S et al (1999) An early-life femoral shaft fracture and bone mineral density at adulthood. Osteoporos Int 10:337–42

    PubMed  CAS  Google Scholar 

  110. Leppala J, Kannus P, Natri A et al (1998) Bone mineral density in the chronic patellofemoral pain syndrome. Calcif Tiss Int 62:548–53

    CAS  Google Scholar 

  111. Goulding A, Jones IE, Taylor RW et al (2001) Bone mineral density and body composition in boys with distal. forearm fractures: a dual-energy X-ray absorptiometry study. J Pediatr 139:509–15

    PubMed  CAS  Google Scholar 

  112. Nielsen SP (2000) The fallacy of BMD: a critical review of the diagnostic use of dual energy X-ray absorptiometry. Clin Rheumatol 19:174–83

    PubMed  CAS  Google Scholar 

  113. Blake GM, Herd RJM, Fogelman (1996) A longitudinal study of supine lateral DXA of the lumbar spine: a comparison with posteroanterior spine, hip and total-body DXA. Osteoporos Int 6:462–70

    PubMed  CAS  Google Scholar 

  114. Maricic M, Tesser J, Chen Z et al (1998) How often does lateral spine DXA detect low bone mass in patients with both normal PA spine and hip? J Clin Densitom 1:251–57

    PubMed  CAS  Google Scholar 

  115. Briggs AM, Wark JD, Kantor S et al (2005) In vivo intra-rater and inter-rater precision of measuring apparent bone mineral density in vertebral subregions using supine lateral dual- energy X-ray absorptiometry (DXA). J Clin Densitom 8:314–19

    PubMed  Google Scholar 

  116. Sandor T, Felsenberg D, Brown E (1997) Discriminability of fracture and non-fracture cases based on the spatial distribution of spinal bone mineral. J Comput Assist Tomogr 21:498–505

    PubMed  CAS  Google Scholar 

  117. Briggs AM, Wark JD, Kantor S et al (2006) Bone mineral density distribution in thoracic and lumbar vertebrae: An ex vivo study using dual energy X-ray absorptiometry. Bone 38:286–88

    PubMed  Google Scholar 

  118. Dionne CE, Dunn KM, Croft PR et al (2008) A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine 33:95–103

    Article  PubMed  Google Scholar 

  119. World Health Organisation. The implications for training of embracing a life course approach to health. Geneva: World Health Organisation and International Longevity Centre (UK); 2000

Download references

Acknowledgements

Dr. Andrew Briggs and Professor Leon Straker are supported by the National Health and Medical Research Council (NHMRC) of Australia.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Wark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggs, A.M., Straker, L.M. & Wark, J.D. Bone health and back pain: What do we know and where should we go?. Osteoporos Int 20, 209–219 (2009). https://doi.org/10.1007/s00198-008-0719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0719-7

Keywords

Navigation