Skip to main content
Log in

Epidemiology and structural basis of racial differences in fragility fractures in Chinese and Caucasians

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Chinese have similar vertebral fracture prevalence but lower incidence of hip and distal forearm fractures than in Caucasians. The underlying structural and biomechanical basis of racial differences in bone fragility is still largely undefined but Chinese assemble their smaller appendicular skeleton with thicker cortices and trabeculae compared with Caucasians. Vertebral fracture prevalence is similar by race, but the incidence of hip and distal forearm fractures is lower in Chinese than in Caucasians. This racial dimorphism cannot be explained by differences in areal bone mineral density (aBMD) as aBMD is lower in Chinese mainly due to their smaller size. The underlying structural and biomechanical basis of racial differences in bone fragility is still largely undefined but Chinese assemble their smaller appendicular skeleton with more mineralised bone matrix within it; the cortices are thicker and perhaps less porous while trabeculae are fewer but thicker and more connected. This configuration produces a bone with a lower surface/volume ratio, which in turn reduces the surface available for remodelling to occur upon so that the lower surface/volume ratio may make the bone less exposed to remodelling and the thicker cortices and trabeculae less vulnerable to remodelling when it does occur during advancing age. However, prospective studies are needed to define racial differences at the age of onset, rate of bone loss from the intracortical, endocortical and trabecular components of the endosteal envelope and bone formation upon the periosteal envelope; notions of bone ‘loss’ are derived mainly from cross-sectional studies. Studies of the site- and surface-specific changes in bone modelling and remodelling are needed to better define racial differences in bone fragility in old age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lau EM, Chan HH, Woo J, Lin F, Black D, Nevitt M, Leung PC (1996) Normal ranges for vertebral height ratios and prevalence of vertebral fracture in Hong Kong Chinese: a comparison with American Caucasians. J Bone Miner Res 11:1364–1368

    Article  PubMed  CAS  Google Scholar 

  2. Ross PD, Fujiwara S, Huang C, Davis JW, Epstein RS, Wasnich RD, Kodama K, Melton LJ 3rd (1995) Vertebral fracture prevalence in women in Hiroshima compared to Caucasians or Japanese in the US. Int J Epidemiol 24:1171–1177

    Article  PubMed  CAS  Google Scholar 

  3. Kung AW (2004) Epidemiology and diagnostic approaches to vertebral fractures in Asia. J Bone Miner Metab 22:170–175

    Article  PubMed  Google Scholar 

  4. Tsang SW, Bow CH, Chu EY, Yeung SC, Soong CC, Kung AW (2011) Clinical risk factor assessment had better discriminative ability than bone mineral density in identifying subjects with vertebral fracture. Osteoporos Int 22:667–674

    Article  PubMed  CAS  Google Scholar 

  5. Ling X, Cummings SR, Mingwei Q, Xihe Z, Xioashu C, Nevitt M, Stone K (2000) Vertebral fractures in Beijing, China: the Beijing Osteoporosis Project. J Bone Miner Res 15:2019–2025

    Article  PubMed  CAS  Google Scholar 

  6. Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129:1000–1011

    PubMed  Google Scholar 

  7. Nevitt MC, Cummings SR, Stone KL et al (2005) Risk factors for a first-incident radiographic vertebral fracture in women > or =65 years of age: the study of osteoporotic fractures. J Bone Miner Res 20:131–140

    Article  PubMed  Google Scholar 

  8. Tsai K, Twu S, Chieng P, Yang R, Lee T (1996) Prevalence of vertebral fractures in chinese men and women in urban Taiwanese communities. Calcif Tissue Int 59:249–253

    Article  PubMed  CAS  Google Scholar 

  9. An Z, Yang D, Zhang Z, Jiang J et al (2002) Epidemiologic survey and analysis of osteoporotic vertebral fracture. Chin J Osteoporosis 8:82–83

    Google Scholar 

  10. Li N, Ou P, Zhu H, Yang D et al (2003) Study on prevalence rate of fractures in the middle-aged and elderly population in parts of China. Chin J Clin Rehabil 7:1284–1285

    Google Scholar 

  11. Xu L, Lu A, Zhao X, Chen X, Cummings SR (1996) Very low rates of hip fracture in Beijing, People’s Republic of China the Beijing Osteoporosis Project. Am J Epidemiol 144:901–907

    PubMed  CAS  Google Scholar 

  12. Yan L, Zhou B, Prentice A, Wang X, Golden MH (1999) Epidemiological study of hip fracture in Shenyang, People’s Republic of China. Bone 24:151–155

    Article  PubMed  CAS  Google Scholar 

  13. Xia W, He S, Liu A, Xu L (2008) Epidemiological study of hip fracture in Beijing, China. Bone 43:S13

    Article  Google Scholar 

  14. Lau EM, Lee JK, Suriwongpaisal P, Saw SM, De Das S, Khir A, Sambrook P (2001) The incidence of hip fracture in four Asian countries: the Asian Osteoporosis Study (AOS). Osteoporos Int 12:239–243

    Article  PubMed  CAS  Google Scholar 

  15. Chie WC, Yang RS, Liu JP, Tsai KS (2004) High incidence rate of hip fracture in Taiwan: estimated from a nationwide health insurance database. Osteoporos Int 15:998–1002

    Article  PubMed  CAS  Google Scholar 

  16. Koh LK, Saw SM, Lee JJ, Leong KH, Lee J (2001) Hip fracture incidence rates in Singapore 1991–1998. Osteoporos Int 12:311–318

    Article  PubMed  CAS  Google Scholar 

  17. Melton LJ, 3rd, Kearns AE, Atkinson EJ, Bolander ME, Achenbach SJ, Huddleston JM, Therneau TM, Leibson CL (2009) Secular trends in hip fracture incidence and recurrence. Osteoporos Int 20:687–694

    Google Scholar 

  18. Finsen V, Johnsen LG, Trano G, Hansen B, Sneve KS (2004) Hip fracture incidence in central norway: a followup study. Clin Orthop Relat Res 173–178

  19. Fisher AA, O’Brien ED, Davis MW (2009) Trends in hip fracture epidemiology in Australia: possible impact of bisphosphonates and hormone replacement therapy. Bone 45:246–253

    Article  PubMed  CAS  Google Scholar 

  20. Lau EM, Cooper C, Fung H, Lam D, Tsang KK (1999) Hip fracture in Hong Kong over the last decade—a comparison with the UK. J Public Health Med 21:249–250

    Article  PubMed  CAS  Google Scholar 

  21. Kung AW, Lee KK, Ho AY, Tang G, Luk KD (2007) Ten-year risk of osteoporotic fractures in postmenopausal Chinese women according to clinical risk factors and BMD T-scores: a prospective study. J Bone Miner Res 22:1080–1087

    Article  PubMed  Google Scholar 

  22. Hagino H, Yamamoto K, Ohshiro H, Nakamura T, Kishimoto H, Nose T (1999) Changing incidence of hip, distal radius, and proximal humerus fractures in Tottori Prefecture, Japan. Bone 24:265–270

    Article  PubMed  CAS  Google Scholar 

  23. Lofthus CM, Frihagen F, Meyer HE, Nordsletten L, Melhuus K, Falch JA (2008) Epidemiology of distal forearm fractures in Oslo, Norway. Osteoporos Int 19:781–786

    Article  PubMed  CAS  Google Scholar 

  24. Wong PC (1965) Epidemiology of fractures of bones of the forearm in a mixed South East Asian community, Singapore: 1. A preliminary study. Acta Orthop Scand 36:153–167

    Article  PubMed  CAS  Google Scholar 

  25. Griffin MR, Ray WA, Fought RL, Melton LJ 3rd (1992) Black–white differences in fracture rates. Am J Epidemiol 136:1378–1385

    PubMed  CAS  Google Scholar 

  26. Lau EM, Woo J, Chan H, Chan MK, Griffith J, Chan YH, Leung PC (1998) The health consequences of vertebral deformity in elderly Chinese men and women. Calcif Tissue Int 63:1–4

    Article  PubMed  CAS  Google Scholar 

  27. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  PubMed  CAS  Google Scholar 

  28. Jacobsen SJ, Goldberg J, Miles TP, Brody JA, Stiers W, Rimm AA (1992) Race and sex differences in mortality following fracture of the hip. Am J Public Health 82:1147–1150

    Article  PubMed  CAS  Google Scholar 

  29. Cooper C, Atkinson EJ, Jacobsen SJ, O’Fallon WM, Melton LJ 3rd (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137:1001–1005

    PubMed  CAS  Google Scholar 

  30. Koike Y, Imaizumi H, Takahashi E, Matsubara Y, Komatsu H (1999) Determining factors of mortality in the elderly with hip fractures. Tohoku J Exp Med 188:139–142

    Article  PubMed  CAS  Google Scholar 

  31. Chariyalertsak S, Suriyawongpisal P, Thakkinstain A (2001) Mortality after hip fractures in Thailand. Int Orthop 25:294–297

    Article  PubMed  CAS  Google Scholar 

  32. Muraki S, Yamamoto S, Ishibashi H, Nakamura K (2006) Factors associated with mortality following hip fracture in Japan. J Bone Miner Metab 24:100–104

    Article  PubMed  Google Scholar 

  33. Nather A, Seow CS, Iau P, Chan A (1995) Morbidity and mortality for elderly patients with fractured neck of femur treated by hemiarthroplasty. Injury 26:187–190

    Article  PubMed  CAS  Google Scholar 

  34. Gong MQ, Mao YJ, Wei J, Wang MY, Bai J, Fan QL, Li D (2005) Outcome of hip fractures after traction treatment in elderly. Zhonghua Yi Xue Za Zhi 85:3263–3265

    PubMed  Google Scholar 

  35. Luo LZ, Xu L (2005) Study on direct economic-burden and its risk factors of osteoporotic hip fracture. Zhonghua Liu Xing Bing Xue Za Zhi 26:669–672

    PubMed  Google Scholar 

  36. Lau EM (1997) Epidemiology of osteoporosis in urbanized Asian populations. Osteoporos Int 7(Suppl 3):S91–S95

    Article  PubMed  Google Scholar 

  37. Sanders KM, Nicholson GC, Ugoni AM, Pasco JA, Seeman E, Kotowicz MA (1999) Health burden of hip and other fractures in Australia beyond 2000. Projections based on the Geelong Osteoporosis Study. Med J Aust 170:467–470

    PubMed  CAS  Google Scholar 

  38. Bhudhikanok GS, Wang MC, Eckert K, Matkin C, Marcus R, Bachrach LK (1996) Differences in bone mineral in young Asian and Caucasian Americans may reflect differences in bone size. J Bone Miner Res 11:1545–1556

    Article  PubMed  CAS  Google Scholar 

  39. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009

    Article  PubMed  CAS  Google Scholar 

  40. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 93:799–808

    Article  PubMed  CAS  Google Scholar 

  41. Bailey DA (1997) The Saskatchewan Pediatric Bone Mineral Accrual Study: bone mineral acquisition during the growing years. Int J Sports Med 18(Suppl 3):S191–S194

    Article  PubMed  Google Scholar 

  42. Gunnes M (1994) Bone mineral density in the cortical and trabecular distal forearm in healthy children and adolescents. Acta Paediatr 83:463–467

    Article  PubMed  CAS  Google Scholar 

  43. Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB (1992) Bone gain in young adult women. JAMA 268:2403–2408

    Article  PubMed  CAS  Google Scholar 

  44. Lloyd T, Petit MA, Lin HM, Beck TJ (2004) Lifestyle factors and the development of bone mass and bone strength in young women. J Pediatr 144:776–782

    PubMed  Google Scholar 

  45. McKay HA, Petit MA, Khan KM, Schutz RW (2000) Lifestyle determinants of bone mineral: a comparison between prepubertal Asian- and Caucasian-Canadian boys and girls. Calcif Tissue Int 66:320–324

    Article  PubMed  CAS  Google Scholar 

  46. Horlick M, Thornton J, Wang J, Levine LS, Fedun B, Pierson RN Jr (2000) Bone mineral in prepubertal children: gender and ethnicity. J Bone Miner Res 15:1393–1397

    Article  PubMed  CAS  Google Scholar 

  47. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R (1999) Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 84:4702–4712

    Article  PubMed  CAS  Google Scholar 

  48. Burrows M, Baxter-Jones A, Mirwald R, Macdonald H, McKay H (2009) Bone mineral accrual across growth in a mixed-ethnic group of children: are asian children disadvantaged from an early age? Calcif Tissue Int

  49. Weaver CM, McCabe LD, McCabe GP, Novotny R, Van Loan M, Going S, Matkovic V, Boushey C, Savaiano DA (2007) Bone mineral and predictors of bone mass in white, Hispanic, and Asian early pubertal girls. Calcif Tissue Int 81:352–363

    Article  PubMed  CAS  Google Scholar 

  50. Yu W, Qin M, Xu L, van Kuijk C, Meng X, Xing X, Cao J, Genant HK (1999) Normal changes in spinal bone mineral density in a Chinese population: assessment by quantitative computed tomography and dual-energy X-ray absorptiometry. Osteoporos Int 9:179–187

    Article  PubMed  CAS  Google Scholar 

  51. Block JE, Smith R, Glueer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4:249–257

    Article  PubMed  CAS  Google Scholar 

  52. Garn SM, Pao EM, Rihl ME (1964) Compact bone in Chinese and Japanese. Science 143:1439–1440

    Article  PubMed  CAS  Google Scholar 

  53. Macdonald H, Kontulainen S, Petit M, Janssen P, McKay H (2006) Bone strength and its determinants in pre- and early pubertal boys and girls. Bone 39:598–608

    Article  PubMed  Google Scholar 

  54. Wang XF, Wang Q, Ghasem-Zadeh A, Iuliano-Burns S, Seeman E (2009) Differences in macro and microarchitecture of the appendicular skeleton in Chinese and Caucasian females originate during growth. J Bone Miner Res 24:

  55. Walker MD, McMahon DJ, Udesky J, Liu G, Bilezikian JP (2009) Application of high-resolution skeletal imaging to measurements of volumetric BMD and skeletal microarchitecture in Chinese-American and white women: explanation of a paradox. J Bone Miner Res 24:1953–1959

    Article  PubMed  Google Scholar 

  56. Wang XF, Wang Q, Ghasem-Zadeh A, Evans A, McLeod C, Iuliano-Burns S, Seeman E (2009) Differences in macro- and microarchitecture of the appendicular skeleton in young Chinese and white women. J Bone Miner Res 24:1946–1952

    Article  PubMed  Google Scholar 

  57. Meredith HV (1978) Secular change in sitting height and lower limb height of children, youths, and young adults of Afro-black, European, and Japanese ancestry. Growth 42:37–41

    PubMed  CAS  Google Scholar 

  58. Seeman E (1997) From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 12:509–521

    Article  PubMed  CAS  Google Scholar 

  59. Ma HM, Du ML, Luo XP et al (2009) Onset of breast and pubic hair development and menses in urban chinese girls. Pediatrics 124:e269–e277

    Article  PubMed  Google Scholar 

  60. Sun SS, Schubert CM, Chumlea WC, Roche AF, Kulin HE, Lee PA, Himes JH, Ryan AS (2002) National estimates of the timing of sexual maturation and racial differences among US children. Pediatrics 110:911–919

    Article  PubMed  Google Scholar 

  61. Huen KF, Leung SS, Lau JT, Cheung AY, Leung NK, Chiu MC (1997) Secular trend in the sexual maturation of southern Chinese girls. Acta Paediatr 86:1121–1124

    Article  PubMed  CAS  Google Scholar 

  62. Marshall WA, Tanner JM (1968) Growth and physiological development during adolescence. Annu Rev Med 19:283–300

    Article  PubMed  CAS  Google Scholar 

  63. Novotny R, Davis J, Ross PD, Wasnich RD (1996) Adolescent milk consumption, menarche, birth weight, and ethnicity influence height of women in Hawaii. J Am Diet Assoc 96:802–804

    Article  PubMed  CAS  Google Scholar 

  64. Leung SS, Lau JT, Xu YY, Tse LY, Huen KF, Wong GW, Law WY, Yeung VT, Yeung WK, Leung NK (1996) Secular changes in standing height, sitting height and sexual maturation of Chinese—the Hong Kong Growth Study, 1993. Ann Hum Biol 23:297–306

    Article  PubMed  CAS  Google Scholar 

  65. Parfitt AM (1994) The two faces of growth: benefits and risks to bone integrity. Osteoporos Int 4:382–398

    Article  PubMed  CAS  Google Scholar 

  66. Zhu K, Greenfield H, Zhang Q, Du X, Ma G, Foo LH, Cowell CT, Fraser DR (2008) Growth and bone mineral accretion during puberty in Chinese girls: a five-year longitudinal study. J Bone Miner Res 23:167–172

    Article  PubMed  CAS  Google Scholar 

  67. Abbassi V (1998) Growth and normal puberty. Pediatrics 102:507–511

    PubMed  CAS  Google Scholar 

  68. Liu XS, Walker MD, McMahon DJ, Udesky J, Liu G, Bilezikian JP, Guo XE (2011) Better skeletal microstructure confers greater mechanical advantages in Chinese-American women versus Caucasian women. J Bone Miner Res

  69. Young W (1989) Elastic stability formulas for stress and strain. In: Crawford H, Thomas S (eds) Roark’s formulas for stress and strain, 6th edn. McGraw-Hill, New York, p 688

    Google Scholar 

  70. Riggs BL, Wahner HW, Melton LJ 3rd, Richelson LS, Judd HL, Offord KP (1986) Rates of bone loss in the appendicular and axial skeletons of women. Evidence of substantial vertebral bone loss before menopause. J Clin Invest 77:1487–1491

    Article  PubMed  CAS  Google Scholar 

  71. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  72. Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106:1553–1560

    Article  PubMed  CAS  Google Scholar 

  73. Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97:699–705

    PubMed  CAS  Google Scholar 

  74. Gennari L, Merlotti D, Martini G et al (2003) Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab 88:5327–5333

    Article  PubMed  CAS  Google Scholar 

  75. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214

    Article  PubMed  Google Scholar 

  76. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  77. Lau EM, Lynn H, Woo J, Melton LJ 3rd (2003) Areal and volumetric bone density in Hong Kong Chinese: a comparison with Caucasians living in the United States. Osteoporos Int 14:583–588

    Article  PubMed  CAS  Google Scholar 

  78. Ross PD, He Y, Yates AJ, Coupland C, Ravn P, McClung M, Thompson D, Wasnich RD (1996) Body size accounts for most differences in bone density between Asian and Caucasian women. The EPIC (Early Postmenopausal Interventional Cohort) Study Group. Calcif Tissue Int 59:339–343

    Article  PubMed  CAS  Google Scholar 

  79. Woo J, Li M, Lau E (2001) Population bone mineral density measurements for Chinese women and men in Hong Kong. Osteoporos Int 12:289–295

    Article  PubMed  CAS  Google Scholar 

  80. Duan Y, Wang XF, Evans A, Seeman E (2005) Structural and biomechanical basis of racial and sex differences in vertebral fragility in Chinese and Caucasians. Bone 36:987–998

    Article  PubMed  Google Scholar 

  81. Nam HS, Shin MH, Zmuda JM, Leung PC, Barrett-Connor E, Orwoll ES, Cauley JA (2010) Race/ethnic differences in bone mineral densities in older men. Osteoporos Int 21:2115–2123

    Article  PubMed  Google Scholar 

  82. Finkelstein JS, Lee ML, Sowers M, Ettinger B, Neer RM, Kelsey JL, Cauley JA, Huang MH, Greendale GA (2002) Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab 87:3057–3067

    Article  PubMed  CAS  Google Scholar 

  83. Liao EY, Wu XP, Deng XG, Huang G, Zhu XP, Long ZF, Wang WB, Tang WL, Zhang H (2002) Age-related bone mineral density, accumulated bone loss rate and prevalence of osteoporosis at multiple skeletal sites in chinese women. Osteoporos Int 13:669–676

    Article  PubMed  Google Scholar 

  84. Finkelstein JS, Brockwell SE, Mehta V et al (2008) Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab 93:861–868

    Article  PubMed  CAS  Google Scholar 

  85. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  86. Tsai KS, Cheng WC, Chen CK, Sanchez TV, Su CT, Chieng PU, Yang RS (1997) Effect of bone area on spine density in Chinese men and women in Taiwan. Bone 21:547–551

    Article  PubMed  CAS  Google Scholar 

  87. Hou YL, Wu XP, Luo XH, Zhang H, Cao XZ, Jiang YB, Liao EY (2007) Differences in age-related bone mass of proximal femur between Chinese women and different ethnic women in the United States. J Bone Miner Metab 25:243–252

    Article  PubMed  Google Scholar 

  88. Marshall LM, Zmuda JM, Chan BK, Barrett-Connor E, Cauley JA, Ensrud KE, Lang TF, Orwoll ES (2008) Race and ethnic variation in proximal femur structure and BMD among older men. J Bone Miner Res 23:121–130

    Article  PubMed  Google Scholar 

  89. Walker MD, Liu XS, Stein E, et al. (2011) Differences in bone microarchitecture between postmenopausal Chinese-American and white women. J Bone Miner Res

  90. Nakamura T, Turner CH, Yoshikawa T, Slemenda CW, Peacock M, Burr DB, Mizuno Y, Orimo H, Ouchi Y, Johnston CC Jr (1994) Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J Bone Miner Res 9:1071–1076

    Article  PubMed  CAS  Google Scholar 

  91. Yan L, Crabtree NJ, Reeve J, Zhou B, Dequeker J, Nijs J, Falch JA, Prentice A (2004) Does hip strength analysis explain the lower incidence of hip fracture in the People’s Republic of China? Bone 34:584–588

    Article  PubMed  CAS  Google Scholar 

  92. Turner CH (1991) Toward a cure for osteoporosis: reversal of excessive bone fragility. Osteoporos Int 2:12–19

    Article  PubMed  CAS  Google Scholar 

  93. Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304

    Article  PubMed  CAS  Google Scholar 

  94. Yu N, Liu YJ, Pei Y et al (2010) Evaluation of compressive strength index of the femoral neck in Caucasians and chinese. Calcif Tissue Int 87:324–332

    Article  PubMed  CAS  Google Scholar 

  95. Duan Y, Seeman E (2002) Bone fragility in Asian and Caucasian men. Ann Acad Med Singapore 31:54–66

    PubMed  CAS  Google Scholar 

  96. Sheu Y, Cauley JA, Wheeler VW, Patrick AL, Bunker CH, Ensrud KE, Orwoll ES, Zmuda JM (2011) Age-related decline in bone density among ethnically diverse older men. Osteoporos Int 22:599–605

    Article  PubMed  CAS  Google Scholar 

  97. Ito M, Nakamura T, Tsurusaki K, Uetani M, Hayashi K (1999) Effects of menopause on age-dependent bone loss in the axial and appendicular skeletons in healthy Japanese women. Osteoporos Int 10:377–383

    Article  PubMed  CAS  Google Scholar 

  98. Qin L, Au SK, Leung PC, Lau MC, Woo J, Choy WY, Hung WY, Dambacher MA, Leung KS (2002) Baseline BMD and bone loss at distal radius measured by peripheral quantitative computed tomography in peri- and postmenopausal Hong Kong Chinese women. Osteoporos Int 13:962–970

    Article  PubMed  CAS  Google Scholar 

  99. Hagino H, Yamamoto K, Teshima R, Kishimoto H, Kagawa T (1992) Radial bone mineral changes in pre- and postmenopausal healthy Japanese women: cross-sectional and longitudinal studies. J Bone Miner Res 7:147–152

    Article  PubMed  CAS  Google Scholar 

  100. Tsurusaki K, Ito M, Hayashi K (2000) Differential effects of menopause and metabolic disease on trabecular and cortical bone assessed by peripheral quantitative computed tomography (pQCT). Br J Radiol 73:14–22

    PubMed  CAS  Google Scholar 

  101. Ruegsegger P, Dambacher MA, Ruegsegger E, Fischer JA, Anliker M (1984) Bone loss in premenopausal and postmenopausal women. A cross-sectional and longitudinal study using quantitative computed tomography. J Bone Joint Surg Am 66:1015–1023

    PubMed  CAS  Google Scholar 

  102. Tsai KS, Cheng WC, Sanchez TV, Chen CK, Chieng PU, Yang RS (1997) Bone densitometry of proximal femur in Chinese subjects: gender differences in bone mass and bone areas. Bone 20:365–369

    Article  PubMed  CAS  Google Scholar 

  103. Horikoshi T, Endo N, Uchiyama T, Tanizawa T, Takahashi HE (1999) Peripheral quantitative computed tomography of the femoral neck in 60 Japanese women. Calcif Tissue Int 65:447–453

    Article  PubMed  CAS  Google Scholar 

  104. Zhang F, Tan LJ, Lei SF, Deng HW (2010) The differences of femoral neck geometric parameters: effects of age, gender and race. Osteoporos Int 21:1205–1214

    Article  PubMed  CAS  Google Scholar 

  105. Wang XF, Duan Y, Beck TJ, Seeman E (2005) Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old age. Bone 36:978–986

    Article  PubMed  Google Scholar 

  106. Beck TJ, Ruff CB, Scott WW Jr, Plato CC, Tobin JD, Quan CA (1992) Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int 50:24–29

    Article  PubMed  CAS  Google Scholar 

  107. Chai B, Tang X, Li H (1996) Osteoclastic resorption of Haversian systems in cortical bone of femoral neck in aged women. A scanning electron microscopic study. Chin Med J (Engl) 109:705–710

    CAS  Google Scholar 

  108. Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8:1211–1217

    Article  PubMed  CAS  Google Scholar 

  109. Peacock M, Turner CH, Liu G, Manatunga AK, Timmerman L, Johnston CC Jr (1995) Better discrimination of hip fracture using bone density, geometry and architecture. Osteoporos Int 5:167–173

    Article  PubMed  CAS  Google Scholar 

  110. Center JR, Nguyen TV, Pocock NA, Noakes KA, Kelly PJ, Eisman JA, Sambrook PN (1998) Femoral neck axis length, height loss and risk of hip fracture in males and females. Osteoporos Int 8:75–81

    Article  PubMed  CAS  Google Scholar 

  111. Cummings SR, Cauley JA, Palermo L, Ross PD, Wasnich RD, Black D, Faulkner KG (1994) Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Study of Osteoporotic Fractures Research Group. Osteoporos Int 4:226–229

    Article  PubMed  CAS  Google Scholar 

  112. Theobald TM, Cauley JA, Gluer CC, Bunker CH, Ukoli FA, Genant HK (1998) Black–white differences in hip geometry. Study of Osteoporotic Fractures Research Group. Osteoporos Int 8:61–67

    Article  PubMed  CAS  Google Scholar 

  113. Im GI, Lim MJ (2011) Proximal hip geometry and hip fracture risk assessment in a Korean population. Osteoporos Int 22:803–807

    Article  PubMed  CAS  Google Scholar 

  114. Wang MC, Aguirre M, Bhudhikanok GS, Kendall CG, Kirsch S, Marcus R, Bachrach LK (1997) Bone mass and hip axis length in healthy Asian, black, Hispanic, and white American youths. J Bone Miner Res 12:1922–1935

    Article  PubMed  CAS  Google Scholar 

  115. Wang XF, Duan Y, Seeman E (2004) Similar trunk length but shorter leg length in Chinese than Caucasians. J Bone Miner Res 19(suppl 1):S168(abstract)

  116. Aoyagi K, Ross PD, Davis JW, Wasnich RD, Hayashi T, Takemoto T (1998) Falls among community-dwelling elderly in Japan. J Bone Miner Res 13:1468–1474

    Article  PubMed  CAS  Google Scholar 

  117. Nelson D, Pettifor JM, Norris S (2008) Race, ethnicity, and osteoporosis. In: Marcus R, Feldman D, Nelson D, Rosen CJ (eds) osteoporosis, 3rd edn. Elsevier Academic Press, San Diego, pp 667–687

    Chapter  Google Scholar 

  118. Duan Y (2005) Pathogenesis of osteoporosis in Asian and Caucasian Women. In: Deng H, Liu Y (eds) Current topics in osteoporosis. World Scientific, Singapore, pp 26–66

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian National Health and Medical Research Council Biomedical Postgraduate Scholarship (ID 400419, X.W.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-F. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XF., Seeman, E. Epidemiology and structural basis of racial differences in fragility fractures in Chinese and Caucasians. Osteoporos Int 23, 411–422 (2012). https://doi.org/10.1007/s00198-011-1739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1739-2

Keywords

Navigation