Skip to main content
Log in

Calcaneal ultrasound reference ranges for Australian men and women: the Geelong Osteoporosis Study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Heel ultrasound is a more portable modality for assessing fracture risk than dual-energy X-ray absorptiometry and does not use ionising radiation. Fracture risk assessment requires appropriate reference data to enable comparisons. This study reports the first heel ultrasound reference ranges for the Australian population.

Introduction

This study aimed to develop calcaneal (heel) ultrasound reference ranges for the Australian adult population using a population-based random sample.

Methods

Men and women aged ≥20 years were randomly selected from the Barwon Statistical Division in 2001–2006 and 1993–1997, respectively, using the electoral roll. Broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (SI) were measured at the heel using a Lunar Achilles Ultrasonometer. Gender-specific means and standard deviations for BUA, SOS and SI were calculated for the entire sample (men 20–93 years, n = 1,104; women 20–92 years, n = 914) and for participants aged 20–29 years (men, n = 157; women, n = 151). Associations between ultrasound measures and age were examined using linear regression.

Results

For men, mean ± standard deviation BUA, SOS and SI were 118.7 ± 15.8 dB/MHz, 1,577.0 ± 43.7 m/s and 100.5 ± 20.7, respectively; values for women were consistently lower (111.0 ± 16.4 dB/MHz, P < 0.001; 1,571.0 ± 39.0 m/s, P = 0.001; and 93.7 ± 20.3, P < 0.001, respectively). BUA was higher in young men compared with young women (124.5 ± 14.4 vs 121.0 ± 15.1 dB/MHz), but SOS (1,590.1 ± 43.1 vs 1,592.5 ± 35.0 m/s) and SI (108.0 ± 19.9 vs 106.3 ± 17.7) were not. The relationships between age and each ultrasound measure were linear and negative across the age range in men; associations were also negative in women but non-linear.

Conclusion

These data provide reference standards to facilitate the assessment of fracture risk in an Australian population using heel ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bouxsein ML, Radloff SE (1997) Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone. J Bone Miner Res 12(5):839–846

    Article  PubMed  CAS  Google Scholar 

  2. Njeh CF, Hans D, Li J, Fan B, Fuerst T, He YQ, Tsuda-Futami E, Lu Y, Wu CY, Genant HK (2000) Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 11(12):1051–1062

    Article  PubMed  CAS  Google Scholar 

  3. Glüer CC, Wu CY, Genant HK (1993) Broadband ultrasound attenuation signals depend on trabecular orientation: an in vitro study. Osteoporos Int 3(4):185–191

    Article  PubMed  Google Scholar 

  4. van den Bergh JPW, van Lenthe GH, Hermus ARMM, Corstens FHM, Smals AGH, Huiskes R (2000) Speed of sound reflects Young’s modulus as assessed by microstructural finite element analysis. Bone 26(5):519–524

    Article  PubMed  Google Scholar 

  5. Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157(6):629–634

    Article  PubMed  CAS  Google Scholar 

  6. Moayyeri A, Kaptoge S, Dalzell N, Luben R, Wareham N, Bingham S (2009) The effect of including quantitative heel ultrasound in models for estimation of 10-year absolute risk of fracture. Bone 45(2):180–184

    Article  PubMed  Google Scholar 

  7. Gluer CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 12(8):1280–1288

    Article  PubMed  CAS  Google Scholar 

  8. Henry MJ, Pasco JA, Seeman E, Nicholson GC, Sanders KM, Kotowicz MA (2001) Assessment of fracture risk: value of random population-based samples—the Geelong Osteoporosis Study. J Clin Densitom 4(4):283–289

    Article  PubMed  CAS  Google Scholar 

  9. Pasco J, Nicholson G, Kotowicz M (2011) Cohort profile: Geelong Osteoporosis Study. Int J Epidemiol. doi:10.1093/ije/dyr148

  10. Henry MJ, Pasco JA, Nicholson GC, Seeman E, Kotowicz MA (2000) Prevalence of osteoporosis in Australian women: Geelong Osteoporosis Study. J Clin Densitom 3(3):261–268

    Article  PubMed  CAS  Google Scholar 

  11. Truscott J (1997) Reference data for ultrasonic bone measurement: variation with age in 2087 Caucasian women aged 16–93 years. Br J Radiol 70(838):1010–1016

    PubMed  CAS  Google Scholar 

  12. Kastelan D, Kujundzic-Tiljak M, Kraljevic I, Kardum I, Giljevic Z, Korsic M (2006) Calcaneus ultrasound in males: normative data in the Croatian population (ECUM study). J Endocrinol Invest 29:221–225

    PubMed  CAS  Google Scholar 

  13. Hinkley HJ, Drysdale IP, Walters NJ, Bird D (2004) Normative data for ultrasound measurement of the calcaneus within different female ethnic groups. Br J Radiol 77(921):740–744

    Article  PubMed  CAS  Google Scholar 

  14. Sosa M, Saavedra P, Munoz-Torres M, Alegre J, Gomez C, Gonzalez-Macias J (2002) Quantitative ultrasound calcaneus measurements: normative data and precision in the Spanish population. Osteoporos Int 13(6):487–492

    Article  PubMed  CAS  Google Scholar 

  15. Trovas G, Tsekoura M, Galanos A, Dionyssiotis Y, Dontas I, Lyritis G, Papaioanou N (2009) Quantitative ultrasound of the calcaneus in greek women: normative data are different from the manufacturer’s normal range. J Clin Densitom 12(3):353–359

    Article  PubMed  Google Scholar 

  16. Landin-Wilhelmsen K, Johansson S, Rosengren A, Dotevall A, Lappas G, Bengtsson BA, Wilhelmsen L (2000) Calcaneal ultrasound measurements are determined by age and physical activity. Studies in two Swedish random population samples. J Intern Med 247(2):269–278

    Article  PubMed  CAS  Google Scholar 

  17. Langton C, Langton D (1997) Male and female normative data for ultrasound measurement of the calcaneus within the UK adult population. Br J Radiol 70(834):580–585

    PubMed  CAS  Google Scholar 

  18. Lim YW, Chan L, Lam KS (2005) Broadband ultrasound attenuation reference database for Southeastern Asian males and females. Ann Acad Med Singapore 34(9 Supp):545–547

    PubMed  CAS  Google Scholar 

  19. Saadi HF, Reed RL, Carter AO, Dunn EV, Qazaq HS, Al-Suhaili AR (2003) Quantitative ultrasound of the calcaneus in Arabian women: relation to anthropometric and lifestyle factors. Maturitas 44(3):215–223

    Article  PubMed  CAS  Google Scholar 

  20. Zhu Z-Q, Liu W, Xu C-L, Han S-M, Zu S-Y, Zhu G-J (2008) Reference data for quantitative ultrasound values of calcaneus in 2927 healthy Chinese men. J Bone Miner Metab 26(2):165–171

    Article  PubMed  Google Scholar 

  21. Heldan de Moura Castro C, Medeiros Pinheiro M, Lúcia Szejnfeld V (2000) Quantitative ultrasound of the calcaneus in Brazilian Caucasian women: normative data are similar to the manufacturer’s normal range. Osteoporos Int 11(11):923–928

    Article  Google Scholar 

  22. Pye S, Devakumar V, Boonen S, Borghs H, Vanderschueren D, Adams J (2010) Influence of lifestyle factors on quantitative heel ultrasound measurements in middle-aged and elderly men. Calcif Tissue Int 86(3):211–219

    Article  CAS  Google Scholar 

  23. Jokinen H, Pulkkinen P, Korpelainen J, Heikkinen J, Keinanen-Kiukaanniemi S, Jamsa T (2010) Risk factors for cervical and trochanteric hip fractures in elderly women: a population-based 10-year follow-up study. Calcif Tissue Int 87(1):44–51

    Article  PubMed  CAS  Google Scholar 

  24. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397

    Article  PubMed  CAS  Google Scholar 

  25. Henry MJ, Pasco JA, Sanders KM, Nicholson GC, Kotowicz MA (2006) Fracture Risk (FRISK) Score: Geelong Osteoporosis Study. Radiology 241(1):190–196

    Article  PubMed  Google Scholar 

  26. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19:1431–1444

    Article  PubMed  CAS  Google Scholar 

  27. Pasco JA, Sanders KM, Hoekstra FM, Henry MJ, Nicholson GC, Kotowicz MA (2005) The human cost of fracture. Osteoporos Int 16(12):2046–2052

    Article  PubMed  Google Scholar 

  28. Randell A, Sambrook PN, Nguyen TV, Lapsley H, Jones G, Kelly PJ, Eisman JA (1995) Direct clinical and welfare costs of osteoporotic fractures in elderly men and women. Osteoporos Int 5(6):427–432

    Article  PubMed  CAS  Google Scholar 

  29. Anonymous (2003) Prevention and management of osteoporosis. World Health Organ Tech Rep Ser 921:1–192

    Google Scholar 

  30. Henry MJ, Pasco JA, Korn S, Gibson JE, Kotowicz MA, Nicholson GC (2010) Bone mineral density reference ranges for Australian men: Geelong Osteoporosis Study. Osteoporos Int 21(6):909–917

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by the National Health and Medical Research Council (NHMRC), Perpetual Trustees and Geelong Region Medical Research Foundation. Dr. Sharon Brennan is the recipient of an NHMRC Early Career Fellowship (1012472).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gould.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, H., Brennan, S.L., Nicholson, G.C. et al. Calcaneal ultrasound reference ranges for Australian men and women: the Geelong Osteoporosis Study. Osteoporos Int 24, 1369–1377 (2013). https://doi.org/10.1007/s00198-012-2082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2082-y

Keywords

Navigation