Skip to main content

Advertisement

Log in

Opportunistic osteoporosis screening using chest CT with artificial intelligence

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Osteoporosis has a high incidence and a low detection rate. If it is not detected in time, it will cause osteoporotic fracture and other serious consequences. This study showed that the attenuation values of vertebrae on chest CT could be used for opportunistic screening of osteoporosis. This will be beneficial to improve the detection rate of osteoporosis and reduce the incidence of adverse events caused by osteoporosis.

Introduction

To explore the value of the attenuation values of all thoracic vertebrae and the first lumbar vertebra measured by artificial intelligence on non-enhanced chest CT to do osteoporosis screening.

Methods

On base of images of chest CT, using artificial intelligence (AI) to measure the attenuation values (HU) of all thoracic and the first vertebrae of patients who underwent CT examination for lung cancer screening and dual-energy X-ray absorptiometry (DXA) examination during the same period. The patients were divided into three groups: normal group, osteopenia group, and osteoporosis group according to the results of DXA. Clinical baseline data and attenuation values were compared among the three groups. The correlation between attenuation values and BMD values was analyzed, and the predictive ability and diagnostic efficacy of attenuation values of thoracic and first lumbar vertebrae on osteopenia or osteoporosis risk were further evaluated.

Results

CT values of each thoracic vertebrae and the first lumbar vertebrae decreased with age, especially in menopausal women and presented high predictive ability and diagnostic efficacy for osteopenia or osteoporosis. After clinical data correction, with every 10 HU increase of CT values, the risk of osteopenia or osteoporosis decreased by 32 ~ 44% and 61 ~ 80%, respectively. And the combined diagnostic efficacy of all thoracic vertebrae was higher than that of a single vertebra. The AUC of recognizing osteopenia or osteoporosis from normal group was 0.831and 0.972, respectively.

Conclusions

The routine chest CT with AI is of great value in opportunistic screening for osteopenia or osteoporosis, which can quickly screen the population at high risk of osteoporosis without increasing radiation dose, thus reducing the incidence of osteoporotic fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All materials were made publicly available at the HARVARD Dataverse and can be accessed at https://doi.org/10.7910/DVN/WDKMAA.

References

  1. Lin X, Xiong D, Peng YQ et al (2015) Epidemiology and management of osteoporosis in the People’s Republic of China: current perspectives. Clin Interv Aging 10:1017–1033

    PubMed  PubMed Central  Google Scholar 

  2. Wu J, Qu Y, Wang K, Chen Y (2019) Healthcare resource utilization and direct medical costs for patients with osteoporotic fractures in China. Value Health Reg Issues 18:106–111

    Article  PubMed  Google Scholar 

  3. Pisani P, Renna MD, Conversano F, Casciaro E, Di Paola M, Quarta E, Muratore M, Casciaro S (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop. 7(3):171–81. https://doi.org/10.5312/wjo.v7.i3.171

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cheng X, Zhao K, Zha X, China Health Big Data (China Biobank) project investigators et al (2021) Opportunistic screening using low-dose ct and the prevalence of osteoporosis in china: a nationwide, multicenter study. J Bone Min Res 36(3):427–435. https://doi.org/10.1002/jbmr.4187

    Article  CAS  Google Scholar 

  5. Zeng Q, Li N, Wang Q, Feng J, Sun D, Zhang Q, Huang J, Wen Q, Hu R, Wang L, Ma Y, Fu X, Dong S, Cheng X (2019) The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey. J Bone Miner Res 34(10):1789–1797. https://doi.org/10.1002/jbmr.3757

    Article  PubMed  Google Scholar 

  6. Smith AD (2019) Screening of bone density at CT: an overlooked opportunity. Radiology 291(2):368–369. https://doi.org/10.1148/radiol.2019190434

    Article  PubMed  Google Scholar 

  7. Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41(1):138–154. https://doi.org/10.1016/j.bone.2007.02.022

    Article  CAS  PubMed  Google Scholar 

  8. Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263(1):3–17. https://doi.org/10.1148/radiol.12110462

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alacreu E, Moratal D, Arana E (2017) Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporos Int 28(3):983–990. https://doi.org/10.1007/s00198-016-3804-3

    Article  PubMed  Google Scholar 

  10. Löffler MT, Sollmann N, Mei K, Valentinitsch A, Noël PB, Kirschke JS, Baum T (2020) X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int 31(2):233–250. https://doi.org/10.1007/s00198-019-05212-2

    Article  PubMed  Google Scholar 

  11. Pickhardt PJ (2022) Value-added opportunistic CT screening: state of the art. Radiology 303(2):241–254. https://doi.org/10.1148/radiol.211561

    Article  PubMed  Google Scholar 

  12. Wang P, She W, Mao Z, Zhou X, Li Y, Niu J, Jiang M, Huang G (2021) Use of routine computed tomography scans for detecting osteoporosis in thoracolumbar vertebral bodies. Skeletal Radiol 50(2):371–379. https://doi.org/10.1007/s00256-020-03573-y

    Article  PubMed  Google Scholar 

  13. Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ (2019) Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20 000 adults. Radiology 291(2):360–367

    Article  PubMed  Google Scholar 

  14. Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, Bastarrika G, Sverzellati N, Mascalchi M, Delorme S, Baldwin DR, Callister ME, Becker N, Heuvelmans MA, Rzyman W, Infante MV, Pastorino U, Pedersen JH, Paci E, Duffy SW, de Koning H, Field JK (2017) European position statement on lung cancer screening. Lancet Oncol 18(12):e754–e766. https://doi.org/10.1016/S1470-2045(17)30861-6

    Article  PubMed  Google Scholar 

  15. Nawa T, Fukui K, Nakayama T, Sagawa M, Nakagawa T, Ichimura H, Mizoue T (2019) A population-based cohort study to evaluate the effectiveness of lung cancer screening using low-dose CT in Hitachi city Japan. Jpn J Clin Oncol 49(2):130–136. https://doi.org/10.1093/jjco/hyy185

    Article  PubMed  Google Scholar 

  16. Kim YW, Kim JH, Yoon SH, Lee JH, Lee CH, Shin CS, Park YS (2017) Vertebral bone attenuation on low-dose chest CT: quantitative volumetric analysis for bone fragility assessment. Osteoporos Int 28(1):329–338. https://doi.org/10.1007/s00198-016-3724-2

    Article  CAS  PubMed  Google Scholar 

  17. Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM (2017) Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J Osteoporos Int Bone Joint Surg Am 99(18):1580–1590. https://doi.org/10.2106/jbjs.16.00749

    Article  Google Scholar 

  18. Cheon H, Choi W, Lee Y et al (2012) Assessment of trabecular bone mineral density using quantitative computed tomography in normal cats. J Vet Med Sci 74:1461–1467

    Article  PubMed  Google Scholar 

  19. Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158(8):588–595. https://doi.org/10.7326/0003-4819-158-8-201304160-00003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Woisetschläger M, Spångeus A (2018) Model for improved correlation of BMD values between abdominal routine dual energy CT data and DXA scans. Eur J Radiol 99:76–81. https://doi.org/10.1016/j.ejrad.2017.12.017

    Article  PubMed  Google Scholar 

  21. Christensen DL, Nappo KE, Wolfe JA, Wade SM, Brooks DI, Potter BK, Forsberg JA, Tintle SM (2017) Proximal Femur Hounsfield units on CT colonoscopy correlate with dual-energy X-ray absorptiometry. Clin Orthop Relat Res 477(4):850–860. https://doi.org/10.1097/CORR.0000000000000480

    Article  Google Scholar 

  22. Wagner SC, Dworak TC, Grimm PD, Balazs GC, Tintle SM (2017) Measurement of distal ulnar Hounsfield Units accurately predicts bone mineral density of the forearm. J Bone Joint Surg Am 99(8)

  23. Burke CJ, Didolkar MM, Barnhart HX, Vinson EN (2016) The use of routine non density calibrated clinical computed tomography data as a potentially useful screening tool for identifying patients with osteoporosis. Clin Cases Miner Bone Metab 13(2):135–140. https://doi.org/10.11138/ccmbm/2016.13.2.135

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pan Y, Shi D, Wang H, Chen T, Cui D, Cheng X, Lu Y (2020) Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur Radiol 30(7):4107–4116. https://doi.org/10.1007/s00330-020-06679-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li YL, Wong KH, Law MW, Fang BX, Lau VW, Vardhanabuti VV, Lee VK, Cheng AK, Ho WY, Lam WW (2018) Opportunistic screening for osteoporosis in abdominal computed tomography for Chinese population. Arch Osteoporos 13(1):76. https://doi.org/10.1007/s11657-018-0492-y

    Article  PubMed  Google Scholar 

  26. Kanis J (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report[J]. Osteoporos Int 4:1–129

    Article  Google Scholar 

  27. Zhan Y, Li S, Yao J et al (2015) Cross-modality vertebrae localization and labeling using learning-based approaches. In: Li S, Yao J (eds) Spinal Imaging and Image Analysis. Springer International Publishing, Cham, pp 301–322

    Chapter  Google Scholar 

  28. Savage RH, van Assen M, Martin SS, Sahbaee P, Griffith LP, Giovagnoli D, Sperl JI, Hopfgartner C, Kärgel R, Schoepf UJ (2020) Utilizing artificial intelligence to determine bone mineral density via chest computed tomography. J Thorac Imaging 35(Suppl 1):S35–S39. https://doi.org/10.1097/RTI.0000000000000484

    Article  PubMed  Google Scholar 

  29. Dong Y, Xu D, Zhou SK, Georgescu B, Chen M, Grbic S, et al. (2017) Automatic liver segmentation using an adversarial image-to-image network. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham. 507–515

  30. Donohue D, Decker S, Ford J, Foley R, Dunbar K, Kumm T, Achors K, Mir H (2018) Opportunistic CT screening for osteoporosis in patients with pelvic and acetabular trauma: technique and potential clinical impact. J Orthop Trauma 32(8):408–413. https://doi.org/10.1097/BOT.0000000000001231

    Article  PubMed  Google Scholar 

  31. Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM (2017) Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J Bone Joint Surg Am 99(18):1580–1590. https://doi.org/10.2106/JBJS.16.00749

    Article  PubMed  Google Scholar 

  32. Pickhardt PJ, Lee SJ, Liu J, Yao J, Lay N, Graffy PM, Summers RM (2019) Population-based opportunistic osteoporosis screening: validation of a fully automated CT tool for assessing longitudinal BMD changes. Br J Radiol 92(1094):20180726. https://doi.org/10.1259/bjr.20180726

    Article  PubMed  Google Scholar 

  33. Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O (2020) Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network. Eur Radiol 30(6):3549–3557. https://doi.org/10.1007/s00330-020-06677-0

    Article  CAS  PubMed  Google Scholar 

  34. Graffy PM, Lee SJ, Ziemlewicz TJ, Pickhardt PJ (2017) Prevalence of vertebral compression fractures on routine CT scans according to L1 trabecular attenuation: determining relevant thresholds for opportunistic osteoporosis screening. Am J Roentgenol 209(3):491–496

    Article  Google Scholar 

  35. Lee SJ, Graffy PM, Zea RD, Ziemlewicz TJ, Pickhardt PJ (2018) Future osteoporotic fracture risk related to lumbar vertebral trabecular attenuation measured at routine body CT. J Bone Miner Res 33(5):860–867. https://doi.org/10.1002/jbmr.3383

    Article  CAS  PubMed  Google Scholar 

  36. Kennedy OD, Brennan O, Rackard SM, O’Brien FJ, Taylor D, Lee TC (2009) Variation of trabecular microarchitectural parameters in cranial, caudal and mid-vertebral regions of the ovine L3 vertebra. J Anat 214(5):729–735. https://doi.org/10.1111/j.1469-7580.2009.01054.x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Garner HW, Paturzo MM, Gaudier G, Pickhardt PJ, Wessell DE (2017) Variation in attenuation in L1 trabecular bone at different tube voltages: caution is warranted when screening for osteoporosis with the use of opportunistic CT. Am J Roentgenol 208(1):165–170

    Article  Google Scholar 

  38. Pickhardt PJ, Graffy PM, Zea R, Lee SJ, Liu J, Sandfort V, Summers RM (2020) Automated abdominal CT imaging biomarkers for opportunistic prediction of future major osteoporotic fractures in asymptomatic adults. Radiology 297(1):64–72. https://doi.org/10.1148/radiol.2020200466

    Article  PubMed  Google Scholar 

  39. Hendrickson NR, Pickhardt PJ, Del Rio AM, Rosas HG, Anderson PA (2018) Bone mineral density T-scores derived from CT attenuation numbers (Hounsfield Units): clinical utility and correlation with dual-energy X-ray absorptiometry. Iowa Orthop J 38:25–31

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to everyone who contributed to this research.

Funding

The study was supported by the National Natural Science Foundation of China (Grant No.81571373, No.81601217, No.82001491), Natural Science Foundation of Hubei Province of China (Grant No. 2017CFB627), Health Commission of Hubei Province scientific research project (WJ2021M247) and Scientific Research Fund of Wuhan Union Hospital (Grant No. 2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benling Qi or Fan Yang.

Ethics declarations

Competing interests

Author Yichen Lu is a member of Siemens Healthineers Digital Technology (Shanghai). The remaining authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Benling Qi and Fan Yang are both the corresponding authors, and Fan Yang takes primary responsibility for the entire paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PNG 2776 kb)

High Resolution (TIF 4953 kb)

Supplementary Fig. 2

(PNG 1586 kb)

High Resolution (TIF 3027 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liao, M., Wang, Y. et al. Opportunistic osteoporosis screening using chest CT with artificial intelligence. Osteoporos Int 33, 2547–2561 (2022). https://doi.org/10.1007/s00198-022-06491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06491-y

Keywords

Navigation