Skip to main content
Log in

On the index of the Diffie–Hellman mapping

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let \(\gamma\) be a generator of a cyclic group G of order n. The least index of a self-mapping f of G is the index of the largest subgroup U of G such that \(f(x)x^{-r}\) is constant on each coset of U for some positive integer r. We determine the index of the univariate Diffie–Hellman mapping \(d(\gamma ^a)=\gamma ^{a^2}\), \(a=0,1,\ldots ,n-1\), and show that any mapping of small index coincides with d only on a small subset of G. Moreover, we prove similar results for the bivariate Diffie–Hellman mapping \(D(\gamma ^a,\gamma ^b)=\gamma ^{ab}\), \(a,b=0,1,\ldots ,n-1\). In the special case that G is a subgroup of the multiplicative group of a finite field we present improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbary, A., Ghioca, D., Wang, Q.: On permutation polynomials of prescribed shape. Finite Fields Appl. 15(2), 195–206 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bach, E., Shallit, J.: Algorithmic Number Theory. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Blake, I.F., Garefalakis, T.: On the complexity of the discrete logarithm and Diffie–Hellman problems. J. Complex. 20(2–3), 148–170 (2004)

    Article  MathSciNet  Google Scholar 

  4. Blake, I.F., Garefalakis, T.: Polynomial approximation of bilinear Diffie–Hellman maps. Finite Fields Appl. 14(2), 379–389 (2008)

    Article  MathSciNet  Google Scholar 

  5. Coppersmith, D., Shparlinski, I.: On polynomial approximation of the discrete logarithm and the Diffie–Hellman mapping. J. Cryptol. 13(3), 339–360 (2000)

    Article  MathSciNet  Google Scholar 

  6. El Mahassni, E., Shparlinski, I.: Polynomial representations of the Diffie–Hellman mapping. Bull. Aust. Math. Soc. 63(3), 467–473 (2001)

    Article  MathSciNet  Google Scholar 

  7. Işık, L., Winterhof, A.: Carlitz rank and index of permutation polynomials. Finite Fields Appl. 49, 156–165 (2018)

    Article  MathSciNet  Google Scholar 

  8. Kiltz, E., Winterhof, A.: On the interpolation of bivariate polynomials related to the Diffie–Hellman mapping. Bull. Aust. Math. Soc. 69(2), 305–315 (2004)

    Article  MathSciNet  Google Scholar 

  9. Kiltz, E., Winterhof, A.: Polynomial interpolation of cryptographic functions related to Diffie–Hellman and discrete logarithm problem. Discr. Appl. Math. 154(2), 326–336 (2006)

    Article  MathSciNet  Google Scholar 

  10. Konjagin, V.S.: The number of solutions of congruences of the nth degree with one unknown. Mat. Sb. (N.S.) 109(151)(2), 171–187, 327 (1979). (Russian)

    MathSciNet  Google Scholar 

  11. Lange, T., Winterhof, A.: Polynomial interpolation of the elliptic curve and XTR discrete logarithm. In: Computing and combinatorics, Lecture Notes in Computer Science, vol. 2387, pp. 137–143. Springer, Berlin (2002)

  12. Lange, T., Winterhof, A.: Interpolation of the elliptic curve Diffie–Hellman mapping. In: Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 2003), Lecture Notes in Computer Science, vol. 2643, pp. 51–60. Springer, Berlin (2003)

  13. Mefenza, T., Vergnaud, D.: Polynomial interpolation of the generalized Diffie–Hellman and Naor–Reingold functions. Des. Codes Cryptogr. 87(1), 75–85 (2019)

    Article  MathSciNet  Google Scholar 

  14. Meidl, W., Winterhof, A.: A polynomial representation of the Diffie–Hellman mapping. Appl. Alg. Eng. Commun. Comput. 13, 313–318 (2002)

    Article  MathSciNet  Google Scholar 

  15. Mullen, G.L., Wan, D., Wang, Q.: Index Bounds for Value Sets of Polynomials Over Finite Fields, Applied Algebra and Number Theory, pp. 280–296. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  16. Niederreiter, H., Winterhof, A.: Cyclotomic \({\cal{R}}\)-orthomorphisms of finite fields. Discr. Math. 295, 161–171 (2005)

    Article  MathSciNet  Google Scholar 

  17. Niederreiter, H., Winterhof, A.: Applied Number Theory. Springer, Cham (2015)

    Book  Google Scholar 

  18. Shparlinski, I.: Cryptographic Applications of Analytic Number Theory. Complexity Lower Bounds and Pseudorandomness, Progr. Comput. Sc. Appl. Logic, vol. 22. Birkhäuser Verlag, Basel (2003)

    Google Scholar 

  19. Wang, Q.: Cyclotomic mapping permutation polynomials over finite fields. In: Sequences, Subsequences, and Consequences (International Workshop, SSC 2007, Los Angeles, CA, USA, May 31–June 2, 2007), Lecture Notes in Computer Sciene, vol. 4893, pp. 119–128. Springer, Berlin (2007)

  20. Wang, Q.: Polynomials over finite fields: an index approach. In: Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, Radon Series. Comput. Appl. Math. vol. 23, pp. 319–348. de Gruyter, Berlin/Boston (2019)

  21. Winterhof, A.: A note on the interpolation of the Diffie–Hellman mapping. Bull. Math. Soc. 64, 475–477 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author is partially supported by the Austrian Science Fund FWF Project P 30405-N32. Parts of this paper were written during a visit of the first author to RICAM. She would like to express her sincere thanks for the hospitality during her visit. The authors would like to thank Steven Wang for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyla Işık.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işık, L., Winterhof, A. On the index of the Diffie–Hellman mapping. AAECC 33, 587–595 (2022). https://doi.org/10.1007/s00200-020-00475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00475-3

Keywords

Mathematics Subject Classification

Navigation