Skip to main content

Advertisement

Log in

Modeling and stability assessment of permanent magnet machine-based DC electrical power system in more electric aircraft

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Advances in the areas of electrical and power electronic technologies play a key role in more electric aircraft (MEA), especially in power converters. Therefore, most electrical power loads on MEA are tightly controlled power converters that behave as constant power loads (CPLs). These CPLs look like a small-signal negative impedance that can significantly degrade the overall system stability. The destabilizing effect may result in poor performance until the DC bus voltage of the system does not adhere to the MIL-STD-704F standard. Thus, a stability study is very important to avoid unstable operations. A proposed MEA model which can be derived using the DQ approach is comprehensive in the introduced stability analysis methods in this article. These methods, i.e., a small-signal stability analysis using the eigenvalue theorem, a modal analysis technique called participation factor analysis, and a large-signal stability analysis via phase-plane analysis, are performed to investigate the stability margin. Moreover, the impact of key parameter variations on MEA stability is also taken into account to deliver the ways of parameter selection at the early design stages for an engineer. The MATLAB topology model and processor-in-loop (PIL) simulations validated the analytical results. The results indicate that a good agreement between theoretical, simulation, and PIL results can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data utilized in this research paper can be available from the corresponding author upon reasonable request.

Abbreviations

MEA:

More electric aircraft

CPLs:

Constant power loads

PIL:

Processor-in-loop

GSSA:

Generalized state-space averaging method

NLAM:

Nonlinear average-value method

DQ:

Direct quadrature method

PMSG:

Permanent magnet synchronous generator

AFE:

Active front-end rectifier

ω m :

Rotor velocity

ω e :

Electrical rotor angular velocity

\(\delta\) :

Phase shift angle between internal voltage and terminal voltage of permanent magnet synchronous generator

\(\phi_{m}\) :

Flux linkage

p :

Poles

L s, L s,abc :

Stator inductance

L d :

Inductance on d-axis

L q :

Inductance on q-axis

I d :

Stator current on d-axis

I q :

Stator current on q-axis

\(I_{{\text{d}}}^{ * }\) :

Reference stator current on d-axis

\(I_{{\text{q}}}^{ * }\) :

Reference stator current on q-axis

\(V_{{\text{d}}}^{^{\prime}}\) :

Compensation term on d-axis

V dc :

Voltage across the dc link capacitor

\(V_{{{\text{dc}}}}^{ * }\) :

Reference voltage of voltage controller

V b :

DC bus voltage

\(V_{b}^{ * }\) :

Nominal voltage

\(V_{b1}^{ * }\) :

Output voltage of the voltage compensator

V d :

Stator voltage on d-axis

V q :

Stator voltage on q-axis

\(V_{{\text{d}}}^{ * }\) :

Reference stator voltage on d-axis

\(V_{{\text{q}}}^{ * }\) :

Reference stator voltage on q-axis

R s , R s,abc :

Stator resistance

\(V_{{{\text{abc}}}}^{ * }\) :

Stator voltage

\(M_{{{\text{abc}}}}^{ * }\) :

Reference modulation index

I in,abc :

Input currents of the AFE rectifier

ω ni :

Natural frequency of current loop in rad/s

f ni :

Natural frequency of current loop in Hz

ζ i :

Damping ratio of current loop

K pd :

Proportional gain of current loop on d-axis

K id :

Integral gain of current loop on d-axis

X id :

State variable of current loop on d-axis

\(Z_{{\text{d}}}^{ * }\) :

Control signal on d-axis

\(M_{{\text{d}}}^{ * }\) :

Reference modulation index on the d-axis

K pq :

Proportional gain of current loop on q-axis

K iq :

Integral gain of current loop on q-axis

X iq :

State variable of current loop on q-axis

\(Z_{{\text{q}}}^{ * }\) :

Control signal on q-axis

\(M_{{\text{q}}}^{ * }\) :

Reference modulation index on the q-axis

ω nv :

Natural frequencies of voltage loop in rad/s

f nv.:

Natural frequencies of voltage loop in Hz

K pv :

Proportional gain of voltage loop

K iv :

Integral gain of voltage loop

X v :

State variable of voltage loop

m :

Modulation index

K d :

Individual droop gain

K t :

Global droop gain

P RL :

Power of resistive load

P CPL :

Power of constant power load

P RL,rated :

Rated power of resistive load

P CPL,rated :

Rated power of constant power load

I dc :

Output current of active front-end rectifier

C dc :

DC link capacitor

R c :

DC transmission line resistance

L c :

DC transmission line inductance

C b :

Capacitor bank

I c :

Current through the DC transmission line

I o :

Total load current

I CPL :

Current of constant power load

I L :

Current of resistive load

\(\mu\) :

Overlap angle

\(\theta\) :

PMSG rotor angle

\(\phi\) :

Phase angle for rotating the dq-axis

M d :

Switching function on the d-axis

M q :

Switching function on the q-axis

σ i :

Real part of the eigenvalues

References

  1. Rosero JA, Ortega JA, Madureira E, Romeral LJU (2007) Moving towards a more electric aircraft. IEEE Aerosp Electron Syst Mag 22:3–9. https://doi.org/10.1109/MAES.2007.340500

    Article  Google Scholar 

  2. Areerak K-N, Wu T, Bozhko SV, Asher GM, Thomas DWP (2011) Aircraft power system stability study including effect of voltage control and actuators dynamic. IEEE Trans Aerosp Electron Syst 47:2574–2589. https://doi.org/10.1109/TAES.2011.6034652

    Article  Google Scholar 

  3. Areerak K-N, Wu T, Bozhko SV, Asher GM, Thomas DWP (2012) Stability study for a hybrid AC-DC more-electric aircraft power system. IEEE Trans Aerosp Electron Syst 48:329–347. https://doi.org/10.1109/TAES.2012.6129639

    Article  Google Scholar 

  4. Wheeler P, Bozhko SV (2014) The more electric aircraft: technology and challenge. IEEE Electrif Mag 2:6–12. https://doi.org/10.1109/MELE.2014.2360720

    Article  Google Scholar 

  5. Gao F, Bozhko S, Asher G, Wheeler P, Patel C (2016) An improved voltage compensation approach in a droop-controlled DC power system for the more electric aircraft. IEEE Trans Power Electron 31:7369–7383. https://doi.org/10.1109/TPEL.2015.2510285

    Article  Google Scholar 

  6. Ni K et al (2019) Electrical and electronic technologies in more-electric aircraft: a review. IEEE Access 7:76145–76166. https://doi.org/10.1109/ACCESS.2019.2921622

    Article  Google Scholar 

  7. Suyapan A, Areerak K, Bozhko S, Yeoh S, Areerak K (2021) Adaptive stabilization of a permanent magnet synchronous generator-based DC electrical power system in more electric aircraft. IEEE Trans Transp Electrif 7:2965–2975. https://doi.org/10.1109/TTE.2021.3081161

    Article  Google Scholar 

  8. Rivetta CH, Emadi A, Williamson GA, Jayabalan R, Fahimi B (2006) Analysis and control of a buck DC-DC converter operating with constant power load in sea and undersea vehicles. IEEE Trans Ind Appl 42:559–572. https://doi.org/10.1109/TIA.2005.863903

    Article  Google Scholar 

  9. Emadi A, Khaligh A, Rivetta CH, Williamson GA (2006) Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans Veh Technol 55:1112–1125. https://doi.org/10.1109/TVT.2006.877483

    Article  Google Scholar 

  10. Rahimi AM, Emadi A (2009) An analytical investigation of DC/DC power electronic converters with constant power loads in vehicular power systems. IEEE Trans Veh Technol 58:2689–2702. https://doi.org/10.1109/TVT.2008.2010516

    Article  Google Scholar 

  11. Griffo A, Wang J (2012) Large signal stability analysis of “more electric” aircraft power systems with constant power loads. IEEE Trans Aerosp Electron Syst 48:477–489. https://doi.org/10.1109/TAES.2012.6129649

    Article  Google Scholar 

  12. Emadi A (2004) Modeling of power electronic loads in AC distribution systems using the generalized State-space averaging method. IEEE Trans Ind Electron 51:992–1000. https://doi.org/10.1109/TIE.2004.834950

    Article  Google Scholar 

  13. Emadi A (2004) Modeling and analysis of multiconverter DC power electronic systems using the generalized state-space averaging method. IEEE Trans Ind Electron 51:661–668. https://doi.org/10.1109/TIE.2004.825339

    Article  Google Scholar 

  14. Mahdavi J, Emaadi A, Bellar MD, Ehsani M (1997) Analysis of power electronic converters using the generalized state-space averaging approach. IEEE Trans Circuits Syst I Fundam Theory Appl 44:767–770. https://doi.org/10.1109/81.611275

    Article  MATH  Google Scholar 

  15. Uan-Zo-li A, Burgos RP, Lacaux F, Wang F, Boroyevich D (2004) Assessment of multipulse converter average models for stability studies using a quasistationary small-signal technique. In: The 4th international power electronics and motion control conference, pp. 1654–1658.

  16. Pakdeeto J, Areerak K, Bozhko S, Areerak K (2021) Stabilization of DC microgrid systems using the loop-cancellation technique. IEEE J Emerg Sel Top Power Electron 9:2652–2663. https://doi.org/10.1109/JESTPE.2021.3053349

    Article  Google Scholar 

  17. Areerak K, Sopapirm T, Bozhko S, Hill CI, Suyapan A, Areerak K (2018) Adaptive stabilization of uncontrolled rectifier based AC–DC power systems feeding constant power loads. IEEE Trans Power Electron 33:8927–8935. https://doi.org/10.1109/TPEL.2017.2779541

    Article  Google Scholar 

  18. Feng X, Liu J, Lee FC (2002) Impedance specifications for stable DC distributed power systems. IEEE Trans Power Electron 17:157–162. https://doi.org/10.1109/63.988825

    Article  Google Scholar 

  19. Riccobono A, Santi E (2014) Comprehensive review of stability criteria for DC power distribution systems. IEEE Trans Ind Appl 17:3525–3535. https://doi.org/10.1109/TIA.2014.2309800

    Article  Google Scholar 

  20. Gao F, Bozhko S (2016) Modeling and impedance analysis of a single DC bus-based multiple-source multiple-load electrical power system. IEEE Trans Transp Electrif 2:335–346. https://doi.org/10.1109/TTE.2016.2592680

    Article  Google Scholar 

  21. Kim H-J, Kang S-W, Seo G-S, Jang P, Cho B-H (2016) Large-signal stability analysis of DC power system with shunt active damper. IEEE Trans Ind Electron 63:6270–6280. https://doi.org/10.1109/TIE.2016.2581150

    Article  Google Scholar 

  22. Liu S, Li X, Xia M, Qin Q, Liu X (2021) Takagi-sugeno multimodeling-based large signal stability analysis of DC microgrid clusters. IEEE Trans Power Electron 63:12670–12684. https://doi.org/10.1109/TPEL.2021.3076734

    Article  Google Scholar 

  23. Zheng H, Yuan X, Cai J, Sun P, Zhou L (2022) Large-signal stability analysis of DC side of VSC-HVDC system based on estimation of domain of attraction. IEEE Trans Power Syst 37:3630–3641. https://doi.org/10.1109/TPEL.2021.3076734

    Article  Google Scholar 

  24. Phosung R, Areerak K, Sopapirm T, Areerak K (2022) Design and optimization of instability mitigation for AC–DC feeder systems with constant power loads using artificial intelligence techniques. IEEE Trans Power Electron 37:5385–5397. https://doi.org/10.1109/TPEL.2021.3136354

    Article  Google Scholar 

  25. Department of Defense Interface Standard. (2004, Mar. 12). Aircraft electric power characteristic. [Online]. Available: https://www.ieee.li/pdf/standards-handbooks/MIL-STD-704F.

  26. Gao F, Zheng X, Bozhko S, Hill CI, Asher G (2015) Modal analysis of a PMSG-based DC electrical power system in the more electric aircraft using eigenvalues sensitivity. IEEE Trans Transport Electrific 1:65–76. https://doi.org/10.1109/TTE.2015.2427312

    Article  Google Scholar 

  27. Gao F, Bozhko S (2016) Modeling and impedance analysis of a single DC bus-based multiple-source multiple-load electrical power system. IEEE Trans Transport Electrific 2:335–346. https://doi.org/10.1109/TTE.2016.2592680

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Suranaree University of Technology (SUT) and in part by Power electronics, Energy, Machines and Control (PEMC) Research Group.

Author information

Authors and Affiliations

Authors

Contributions

Ratapon Phosung, the main author of the paper, is responsible for the writing of the research article, important knowledge study for the paper, theoretical research, and experimental operation. Kongpan Areerak, the corresponding author, is mainly responsible for the guidance of the concept of the paper, the improvement in the language of the paper, and the correction of the content of the paper. Kongpol Areerak, the co-author of the paper, is mainly responsible for the review of the overall content of the paper. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Kongpan Areerak.

Ethics declarations

Conflict of interest

All authors declare that they have no known competing financial interests or personal relationships that would have appeared to influence the research work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The details of the classical method for vector controllers on dq-axis are as follows:

1.1 Current loop control

The schematic of the current (Id and Iq) loop control of the proposed MEA in Fig. 1 can be shown in Fig. 

Fig. 13
figure 13

Schematic of current loop control

13. Because the current loop control on d-axis and q-axis is identical, this article will only present the methodology for designing the current loop control on d-axis, wherein the controller on q-axis can use the same equation. Closed-loop transfer function of the current loop is given by (9).

$$ \frac{{I_{d} }}{{I_{d}^{ * } }} = - \frac{{K_{{{\text{pd}}}} s + K_{{{\text{id}}}} }}{{L_{d} s^{2} + \left( {R_{s} - K_{{{\text{pd}}}} } \right)s - K_{{{\text{id}}}} }} $$
(9)

It is recognized that the closed-loop transfer function for the standard second-order system can be expressed in (10).

$$ T = \frac{{\omega_{n}^{2} }}{{s^{2} + 2\zeta \omega_{n} s + \omega_{n}^{2} }} $$
(10)

Hence, the parameters Kpd and Kid can be designed by comparing the denominators of (9) and (10) so as to obtain (11)

$$ \left\{ \begin{gathered} K_{{{\text{pd}}}} = R_{s} - 2\zeta_{i} \omega_{{{\text{ni}}}} L_{d} \hfill \\ K_{{{\text{id}}}} = - L_{d} \omega_{{{\text{ni}}}}^{2} \hfill \\ \end{gathered} \right. $$
(11)

As mentioned above, both d-axis and q-axis controls are identical. Consequently, the equations for designing the controllers on q-axis are shown in (12).

$$ \left\{ \begin{aligned} K_{{{\text{pq}}}} = & R_{s} - 2\zeta_{i} \omega_{{{\text{ni}}}} L_{q} \\ K_{{{\text{iq}}}} = & - L_{q} \omega_{{{\text{ni}}}}^{2} \\ \end{aligned} \right. $$
(12)

where ωni = 2π × fni.

1.2 Voltage loop control

The schematic of the voltage (Vdc) loop control of the studied MEA is depicted in Fig. 

Fig. 14
figure 14

Schematic of voltage loop control

14. Closed-loop transfer function of the voltage loop is determined in (13).

$$ \frac{{V_{{{\text{dc}}}} }}{{V_{{{\text{dc}}}}^{ * } }} = \frac{{3m\left( {K_{{{\text{pv}}}} s + K_{{{\text{iv}}}} } \right)}}{{4C_{{{\text{dc}}}} s^{2} + 3mK_{{{\text{pv}}}} s + 3mK_{{{\text{iv}}}} }} $$
(13)

Based on the current loop procedure, the equations for designing the parameters Kpv and Kiv are depicted in (14).

$$ \left\{ \begin{gathered} K_{{{\text{pv}}}} = \frac{{8\zeta_{v} \omega_{{{\text{nv}}}} C_{{{\text{dc}}}} }}{3m} \hfill \\ K_{{{\text{iv}}}} = \frac{{4C_{{{\text{dc}}}} \omega_{{{\text{nv}}}}^{2} }}{3m} \hfill \\ \end{gathered} \right. $$
(14)

where ωnv = 2π × fnv.

1.3 Droop control and voltage compensation

The schematic of the voltage-mode droop control and voltage compensation is demonstrated in Fig. 

Fig. 15
figure 15

Schematic of droop control and voltage compensation

15. Because the studied power system in this article is a single-generator/single-bus DC distribution MEA power system, the individual droop gain (Kd) of droop controller is equal to the global droop gain (Kt) [5]. The optimal gains Kt, designed via the minimum transmission loss condition, can be expressed in (15) and (16).

$$ \left\{ \begin{gathered} {\text{if }}\frac{1}{3} \le r \le 1 \hfill \\ R_{L} \frac{1 - r}{{1 + r}} < K_{t} \le \frac{{R_{L} }}{2}\left( {\sqrt {1 + \frac{1}{r}} - 1} \right) \hfill \\ \end{gathered} \right. $$
(15)
$$ \left\{ \begin{gathered} {\text{if }}r > 1 \hfill \\ 0 < K_{t} \le \frac{{R_{L} }}{2}\left( {\sqrt {1 + \frac{1}{r}} - 1} \right) \hfill \\ \end{gathered} \right. $$
(16)

where r is ratio between the power of CPL (PCPL) and resistive load (\(P_{{R_{L} }}\)).

In this article, the PI parameters for both current and voltage loops are designed by selecting ζi = 0.8, ζv = 0.8, fni = 2000 Hz, and fnv = 200 Hz. As for parameters for droop control and voltage compensation are set by defining PCPL = 10 kW and PRL = 7 kW.

Appendix B

The details of Jacobean matrixes A, B, C, and D can be expressed as follow:

$$ a(2,5) = - \frac{{K_{{{\text{pv}}}} K_{{{\text{pq}}}} (KK_{t} - K_{d} )}}{{L_{q} R_{L} }} + \frac{{K_{{{\text{pv}}}} K_{{{\text{pq}}}} P_{{{\text{CPL}}}} (K_{t} - K_{d} )}}{{L_{q} V_{b,0}^{2} }} $$
$$ a(3,1) = \frac{3}{{2C_{{{\text{dc}}}} }} \cdot \frac{1}{{V_{{{\text{dc}},0}} }}\left( { - 2K_{{{\text{pd}}}} I_{d,0} + K_{{{\text{id}}}} X_{{{\text{id}},0}} + K_{{{\text{pd}}}} I_{d}^{*} } \right) $$
$$ \begin{aligned} a(3,2) = & \frac{3}{{2C_{{{\text{dc}}}} }} \cdot \frac{1}{{V_{{{\text{dc}},0}} }}\left( { - 2K_{{{\text{pq}}}} I_{q,0} + \omega_{e} \phi_{m} - K_{{{\text{pv}}}} K_{{{\text{pq}}}} V_{{{\text{dc}},0}}} \right. \\ & + K_{{{\text{pv}}}} K_{{{\text{pq}}}} V_{b}^{*} + \frac{{K_{{{\text{pv}}}} K_{{{\text{pq}}}} (K_{t} - K_{d} )V_{b,0} }}{{R_{L} }} \\ & + \frac{{K_{{{\text{pv}}}} K_{{{\text{pq}}}} (K_{t} - K_{d} )P_{{{\text{CPL}}}} }}{{V_{b,0} }} \left. { + K_{{{\text{iq}}}} X_{{{\text{iq}},0}} } \right) \\ \end{aligned} $$
$$ \begin{gathered} a(3,3) = \frac{3}{{2C_{{{\text{dc}}}} }} \cdot \frac{1}{{V_{{{\text{dc}},0}}^{2} }}\left( { - K_{{{\text{pd}}}} I_{d,0}^{2} + K_{{{\text{id}}}} I_{d,0} X_{{{\text{id}},0}} + K_{{{\text{pd}}}} I_{d,0} I_{d}^{*} } \right. \hfill \\ \begin{array}{*{20}c} {- K_{{{\text{pq}}}} I_{q,0}^{2} + \frac{{K_{{{\text{pv}}}} K_{{{\text{pq}}}} (K_{t} - K_{d} )I_{q,0} V_{b,0} }}{{R_{L} }} + \frac{{K_{{{\text{pv}}}} K_{{{\text{pq}}}} (K_{t} - K_{d} )P_{{{\text{CPL}}}} I_{q,0} }}{{V_{b,0} }}} \\ \end{array} \hfill \\ \left. { + \omega_{e} \phi_{m} I_{q,0} + K_{iv} K_{{{\text{pq}}}} I_{q,0} X_{v,0} + K_{{{\text{iq}}}} I_{q,0} X_{{{\text{iq}},0}} + K_{{{\text{pv}}}} K_{{{\text{pq}}}} I_{q,0} V_{b}^{*} } \right) \hfill \\ \end{gathered} $$
$$ a(3,5) = \frac{{3K_{{{\text{pv}}}} K_{{{\text{pq}}}} (K_{t} - K_{d} )I_{q,0} }}{{2C_{{{\text{dc}}}} V_{{{\text{dc}},0}} R_{L} }} - \frac{{3K_{{{\text{pv}}}} K_{{{\text{pq}}}} (K_{t} - K_{d} )P_{{{\text{CPL}}}} I_{q,0} }}{{2C_{{{\text{dc}}}} V_{{{\text{dc}},0}} V_{b,0}^{2} }} $$
$$ a(8,5) = \frac{{K_{pv} (K_{t} - K_{d} )}}{{R_{L} }} - \frac{{K_{pv} (K_{t} - K_{d} )P_{CPL} }}{{V_{b,0}^{2} }} $$
$$ {\mathbf{C(x}}_{{\mathbf{0}}} {\mathbf{,u}}_{{\mathbf{0}}} {\mathbf{)}} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{array} } \right]_{3 \times 8} $$
$$ {\mathbf{D(x}}_{{\mathbf{0}}} {\mathbf{,u}}_{{\mathbf{0}}} {\mathbf{) = }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} } \right]_{3 \times 3} $$
$$ {\mathbf{B(x}}_{{\mathbf{o}}} {\mathbf{,u}}_{{\mathbf{o}}} {\mathbf{)}} = \left[ {\begin{array}{*{20}c} { - \frac{{K_{{{\text{pd}}}} }}{{L_{d} }}} & 0 & 0 \\ 0 & { - \frac{{K_{{{\text{pv}}}} K_{{{\text{pq}}}} }}{{L_{q} }}} & { - \frac{{K_{{{\text{pv}}}} K_{{{\text{pq}}}} (K_{t} - K_{d} )}}{{L_{q} V_{b,0} }}} \\ {\frac{{3K_{{{\text{pd}}}} I_{d,0} }}{{2C_{{{\text{dc}}}} V_{{{\text{dc}},0}} }}} & {\frac{{3K_{{{\text{pv}}}} K_{{{\text{pq}}}} I_{q,0} }}{{2C_{{{\text{dc}}}} V_{{{\text{dc}},0}} }}} & {\frac{{3K_{{{\text{pv}}}} K_{{{\text{pq}}}} I_{q,0} (K_{t} - K_{d} )}}{{2C_{{{\text{dc}}}} V_{{{\text{dc}},0}} V_{b,0} }}} \\ 0 & 0 & 0 \\ 0 & 0 & { - \frac{1}{{C_{b} V_{b,0} }}} \\ 0 & 1 & {\frac{{K_{t} - K_{d} }}{{V_{b,0} }}} \\ 1 & 0 & 0 \\ 0 & {K_{{{\text{pv}}}} } & {\frac{{K_{{{\text{pv}}}} (K_{t} - K_{d} )}}{{V_{b,0} }}} \\ \end{array} } \right]_{8 \times 3} $$
$$ {\mathbf{A(x}}_{{\mathbf{o}}} {\mathbf{,u}}_{{\mathbf{o}}} {\mathbf{) = }}\left[ {\begin{array}{*{20}c} {\frac{{K_{{{\text{pd}}}} - R_{s} }}{{L_{d} }}} & 0 & 0 & 0 & 0 & 0 & { - \frac{{K_{{{\text{id}}}} }}{{L_{d} }}} & 0 \\ 0 & {\frac{{K_{{{\text{pq}}}} - R_{s} }}{{L_{q} }}} & {\frac{{K_{{{\text{pv}}}} K_{{{\text{pq}}}} }}{{L_{q} }}} & 0 & {a(2,5)} & { - \frac{{K_{{{\text{iv}}}} K_{{{\text{pq}}}} }}{{L_{q} }}} & 0 & { - \frac{{K_{{{\text{iq}}}} }}{{L_{q} }}} \\ {a(3,1)} & {a(3,2)} & {a(3,3)} & { - \frac{1}{{C_{{{\text{dc}}}} }}} & {a(3,5)} & {\frac{{3K_{{{\text{iv}}}} K_{{{\text{pq}}}} I_{q,0} }}{{2C_{{{\text{dc}}}} V_{{{\text{dc}},0}} }}} & {\frac{{3K_{{{\text{id}}}} I_{d,0} }}{{2C_{{{\text{dc}}}} V_{{{\text{dc}},0}} }}} & {\frac{{3K_{{{\text{iq}}}} I_{q,0} }}{{2C_{{{\text{dc}}}} V_{{{\text{dc}},0}} }}} \\ 0 & 0 & {\frac{1}{{L_{c} }}} & { - \frac{{R_{c} }}{{L_{c} }}} & { - \frac{1}{{L_{c} }}} & 0 & 0 & 0 \\ 0 & 0 & 0 & {\frac{1}{{C_{b} }}} & { - \frac{1}{{R_{L} C_{b} }} + \frac{{P_{{{\text{CPL}}}} }}{{C_{b} V_{{{\text{dc}},0}}^{2} }}} & 0 & 0 & 0 \\ 0 & 0 & { - 1} & 0 & {\frac{{K_{t} - K_{d} }}{{R_{L} }} - \frac{{\left( {K_{t} - K_{d} } \right)P_{{{\text{CPL}}}} }}{{V_{b,0}^{2} }}} & 0 & 0 & 0 \\ { - 1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & { - 1} & { - K_{{{\text{pv}}}} } & 0 & {a(8,5)} & {K_{{{\text{iv}}}} } & 0 & 0 \\ \end{array} } \right]_{8 \times 8} $$

Appendix C

The system parameters: Rs = 1.058 mΩ, Ls = Ld = Lq = 99 µH, \(\phi_{m}\) = 0.03644 V.s/rad, p = 6, ωe = 2π × 400 rad/s, Cdc = 1mF, cable length = 10 m, Rc = 6 mΩ, Lc = 2 µH, Cb = 0.5 mF, RL = 10 Ω, Kpv = 3.5744, Kiv = 2807.3541, Kpd = Kpq =  − 1.9895, Kid = Kiq =  − 1563.3453, Kd = Kt = 0.06, \(I_{d}^{*}\) = 0 A, \(V_{b}^{*}\) = 270 V, PRL,rated = 7 kW, and PCPL,rated = 38 kW.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phosung, R., Areerak, K. & Areerak, K. Modeling and stability assessment of permanent magnet machine-based DC electrical power system in more electric aircraft. Electr Eng 105, 3175–3190 (2023). https://doi.org/10.1007/s00202-023-01863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01863-x

Keywords

Navigation