Skip to main content
Log in

Purification and characterization of succinate:menaquinone oxidoreductase from Corynebacterium glutamicum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Succinate:menaquinone oxidoreductase from Corynebacterium glutamicum, a high-G+C, Gram-positive bacterium, was purified to homogeneity. The enzyme contained two heme B molecules and three polypeptides with apparent molecular masses of 67, 29 and 23 kDa, which corresponded to SdhA (flavoprotein), SdhB (iron–sulfur protein), and SdhC (membrane anchor protein), respectively. In non-denaturating polyacrylamide gel electrophoresis, the enzyme migrated as a single band with an apparent molecular mass of 410 kDa, suggesting that it existed as a trimer. The succinate dehydrogenase activity assayed using 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone and 2,6-dichloroindophenol as the electron acceptor was inhibited by 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), and the Dixon plots were biphasic. In contrast, the succinate dehydrogenase activity assayed using phenazine methosulfate and 2,6-dichloroindophenol was inhibited by p-benzoquinone and not by HQNO. These findings suggested that the C. glutamicum succinate:menaquinone oxidoreductase had two quinone binding sites. In the phylogenetic tree of SdhA, Corynebacterium species do not belong to the high-G+C group, which includes Mycobacterium tuberculosis and Streptomyces coelicolor, but are rather close to the group of low-G+C, Gram-positive bacteria such as Bacillus subtilis. This situation may have arisen due to the horizontal gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chance B (1957) Techniques for the assay of the respiratory enzymes. Methods Enzymol 4:273–329

    Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    CAS  PubMed  Google Scholar 

  • Hägerhäll C (1997) Succinate:quinone oxidoreductases. Variations on a conserved theme. Biochim Biophys Acta 1320:107–141

    PubMed  Google Scholar 

  • Hägerhäll C, Hederstedt L (1996) A structural model for the membrane-integral domain of succinate:quinone oxidoreductases. FEBS Lett 389:25–31

    Article  PubMed  Google Scholar 

  • Hägerhäll C, Aasa R, von Wachenfeldt C, Hederstedt L (1992) Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase. Biochemistry 31:7411–7421

    Article  PubMed  Google Scholar 

  • Hägerhäll C, Fridén H, Aasa R, Hederstedt L (1995) Transmembrane topology and axial ligands to hemes in cytochrome b558 subunit of Bacillus subtilis succinate:menaquinone reductase. Biochemistry 34:11080–11089

    Article  PubMed  Google Scholar 

  • Hederstedt L (2002) Succinate:quinone oxidoreductase in the bacteria Paracoccus denitrificans and Bacillus subtilis. Biochim Biophys Acta 1553:74–83

    CAS  PubMed  Google Scholar 

  • Ikeuchi M, Inoue Y (1988) A new photosystem II reaction center component (4.8 kDa protein) encoded by chloroplast genome. FEBS Lett 241:99–104

    Article  CAS  PubMed  Google Scholar 

  • Iverson TM, Luna-Chavez C, Cecchini G, Rees DC (1999) Structure of the Escherichia coli FRD respiratory complex. Science 284:1961–1966

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto K, Sakiyama M, Sakamoto J, Noguchi S, Sone N (2000) Menaquinol oxidase activity and primary structure of cytochrome bd from the amino-acid fermenting bacterium Corynebacterium glutamicum. Arch Microbiol 173:390–397

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lancaster CR, Kröger A (2000) Succinate:quinone oxidoreductases: new insights from X-ray crystal structures. Biochim Biophys Acta 1459:422–431

    CAS  PubMed  Google Scholar 

  • Lancaster CR, Kröger A, Auer M, Michel H (1999) Structure of FRD from Wolinella succinogenes at 2.2 Å resolution. Nature 402:377–385

    Article  CAS  PubMed  Google Scholar 

  • Lemma E, Unden G, Kröger A (1990) Menaquinone is an obligatory component of the chain catalyzing succinate respiration in Bacillus subtilis. Arch Microbiol 155:62–67

    Article  CAS  PubMed  Google Scholar 

  • Lemma E, Hägerhäll C, Geisler V, Brandt U, von Jagow G, Kröger A (1991) Reactivity of the Bacillus subtilis succinate dehydrogenase complex with quinones. Biochim Biophys Acta 1059:281–285

    CAS  PubMed  Google Scholar 

  • Lemos RS, Fernandes AS, Pereira MM, Gomes CM, Teixeira M (2002) Quinol:fumarate oxidoreductases and succinate:quinone oxidoreductases: phylogenetic relationships, metal centres and membrane attachment. Biochim Biophys Acta 1553:158–170

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Matsson M, Tolstoy D, Aasa R, Hederstedt L (2000) The distal heme center in Bacillus subtilis succinate:quinone reductase is crucial for electron transfer to menaquinone. Biochemistry 39:8617–8624

    Article  CAS  PubMed  Google Scholar 

  • Niebisch A, Bott M (2001) Molecular analysis of the cytochrome bc1aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1. Arch Microbiol 175:282–294

    Article  CAS  PubMed  Google Scholar 

  • Oyedotun KS, Lemire BD (1999) The Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. Identification of Sdh3p amino acid residues involved in ubiquinone binding. J Biol Chem 274:23956–23962

    Article  CAS  PubMed  Google Scholar 

  • Oyedotun KS, Lemire BD (2001) The quinone-binding sites of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. J Biol Chem 276:16936–16943

    Article  CAS  PubMed  Google Scholar 

  • Pappenheimer AM Jr, Hendee E (1949) Diphtheria toxin. V. A comparison between the diphtherial succinoxidase system and that of beef heart muscle. J Biol Chem 180:597–609

    CAS  Google Scholar 

  • Pereira MM, Teixeira M (2003) Is a Q-cycle-like mechanism operative in dihaemic succinate:quinone and quinol:fumarate oxidoreductases? FEBS Lett 543:1–4

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto J, Koga E, Mizuta T, Sato C, Noguchi S, Sone N (1999) Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus. Biochim Biophys Acta 1411:147–158

    CAS  PubMed  Google Scholar 

  • Sakamoto J, Shibata T, Mine T, Miyahara R, Torigoe T, Noguchi S, Matsushita K, Sone N (2001) Cytochrome c oxidase contains an extra charged amino acid cluster in a new type of respiratory chain in the amino-acid-producing Gram-positive bacterium Corynebacterium glutamicum. Microbiology 147:2865–2871

    CAS  PubMed  Google Scholar 

  • Sato-Watanabe M, Mogi T, Miyoshi H, Iwamura H, Matsushita K, Adachi O, Anraku Y (1994) Structure-function studies on the ubiquinol oxidation site of the cytochrome bo complex from Escherichia coli using p-benzoquinones and substituted phenols. J Biol Chem 269:28899–28907

    CAS  PubMed  Google Scholar 

  • Schäfer G, Anemuller S, Moll R (2002) Archaeal complex II: “classical” and “non-classical” succinate:quinone reductases with unusual features. Biochim Biophys Acta 155:57–73

    Google Scholar 

  • Schägger H, Cramer WA, von Jagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217:220–230

    Article  CAS  PubMed  Google Scholar 

  • Schirawski J, Unden G (1998) Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. Eur J Biochem 257:210–215

    Article  CAS  PubMed  Google Scholar 

  • Schnorpfeil M, Janausch IG, Biel S, Kröger A, Unden G (2001) Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. Eur J Biochem 268:3069–3074

    Article  CAS  PubMed  Google Scholar 

  • Smirnova IA, Hägerhäll C, Konstantinov AA, Hederstedt L (1995) HOQNO interaction with cytochrome b in succinate: menaquinone oxidoreductase from Bacillus subtilis. FEBS Lett 359:23–26

    Article  CAS  PubMed  Google Scholar 

  • Sone N, Nagata K, Kojima H, Tajima J, Kodera Y, Kanamaru T, Noguchi S, Sakamoto J (2001) A novel hydrophobic diheme c-type cytochrome. Purification from Corynebacterium glutamicum and analysis of the QcrCBA operon encoding three subunit proteins of a putative cytochrome reductase complex. Biochim Biophys Acta 1503:279–290

    CAS  PubMed  Google Scholar 

  • Steyn-Parve ET, Beinert (1958) On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. VI. Isolation and properties of stable enzyme-substrate complexes. J Biol Chem 233:843–852

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4674–4680

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial ecolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

  • Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshi Sakamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurokawa, T., Sakamoto, J. Purification and characterization of succinate:menaquinone oxidoreductase from Corynebacterium glutamicum. Arch Microbiol 183, 317–324 (2005). https://doi.org/10.1007/s00203-005-0775-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0775-8

Keywords

Navigation