Skip to main content
Log in

Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Physiological, biochemical and macroarray analyses of Lactococcus lactis IL1403 and its ccpA and bglR single and double mutants engaged in lactose and β-glucosides catabolism were performed. The kinetic analysis indicated the presence of different transport systems for salicin and cellobiose. The control of salicin catabolism was found to be mediated by the transcriptional regulator BglR and the CcpA protein. The transcriptional analysis by macroarray technology of genes from the PEP:PTS regions showed that several genes, like ybhE, celB, ptcB and ptcA, were expressed at higher levels both in wild type cells exposed to cellobiose and in the ccpA mutant. We also demonstrated that in L. lactis IL1403 cultured on medium with cellobiose and lactose as carbon sources, after the first phase of cellobiose consumption and then co-metabolism of the two sugars, when cellobiose is exhausted the strain uses lactose as the only carbon source. These data could indicate that lactose and cellobiose are transported by a unique system—a PTS carrier induced by the presence of cellobiose, and negatively controlled by the CcpA regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LAB:

Lactic acid bacteria

CDM:

Chemically defined medium

References

  • Aleksandrzak T, Kowalczyk M, Kok J, Bardowski J (2000) Regulation of carbon catabolism in Lactococcus lactis. In: Bielecki S, Tramper J, Polak J (eds) Food biotechnology, vol 17. Elsevier Science BV, Amsterdam, The Netherlands, pp 61–66

  • Aleksandrzak-Piekarczyk T, Kok J, Renault P, Bardowski J (2005) Alternative lactose catabolic pathway in Lactococcus lactis. Appl Environ Microbiol 71(10):6060–6069

    Article  PubMed  CAS  Google Scholar 

  • Aung-Hilbrich LM, Seidel G, Wagner A, Hillen W (2002) Quantification of the influence of HprSer46P on CcpA-cre interaction. J Mol Biol 319:77–85

    Article  PubMed  CAS  Google Scholar 

  • Bardowski J, Ehrlich SD, Chopin A (1994) BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in β-glucoside utilization in Lactococcus lactis. J Bacteriol 176:5681–5685

    PubMed  CAS  Google Scholar 

  • Bardowski J, Ehrlich SD, Chopin A (1995) A protein, belonging to a family of RNA-binding transcriptional antiterminators, controls β-glucoside assimilation in Lactococcus lactis. Dev Biol Stand Basel Karger 85:555–558

    CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403. Genome Res 11:731–753

    Article  PubMed  CAS  Google Scholar 

  • Cocaign-Bousquet M, Garriques C, Loubiere P, Lindley ND (1996) Physiology of pyruvate metabolism in Lactococcus lactis. Antonie van Leeuwenhoek 70:253–267

    Article  PubMed  CAS  Google Scholar 

  • Cocaign-Bousquet M, Even S, Loubiere P, Lindley ND (2002) Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux. Appl Microbiol Biotechnol 60:24–32

    Article  PubMed  CAS  Google Scholar 

  • Curtis SJ, Epstein W (1975) Phosphorylation of d-glucose in Escherichia coli mutants defective in glucose phosphotransferase, mannose phosphotransferase, and glucokinase. J Bacteriol 122:1189–1199

    PubMed  CAS  Google Scholar 

  • Dalet K, Arous S, Cenatiempo Y, Hechard Y (2003) Characterization of a unique sigma54-dependent PTS operon of the lactose family in Listeria monocytogenes. Biochimie 85(7):633–638

    Article  PubMed  CAS  Google Scholar 

  • Deutscher J, Küster E, Bergstedt U, Charrier V, Hillen W (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol Microbiol 15:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Even S, Lindley ND, Cocaign-Bousquet M (2001) Molecular physiology of sugar catabolism in Lactococcus lactis IL1403. J Bacteriol 183:3817–3824

    Article  PubMed  CAS  Google Scholar 

  • Fontaine L, Even S, Soucaille P, Lindley ND, Cocaign-Bousquet M (2001) Transcript quantification based on chemical labeling of RNA associated with fluorescent detection. Anal Biochem 298:246–252

    Article  PubMed  CAS  Google Scholar 

  • Garriques C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287

    Google Scholar 

  • Hueck CJ, Kraus A, Schmiedel D, Hillen W (1995) Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus subtilis. Mol Microbiol 16(5):855–864

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Dossonnet V, Küster E, Hillen W, Deutscher J, Klevit RE (1997) Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272:26530–26535

    Article  PubMed  CAS  Google Scholar 

  • Kowalczyk M, Bardowski J (2007) Regulation of sugar catabolism in Lactococcus lactis. Crit Rev Microbiol 33:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kowalczyk M, Borcz B, Plochocka D, Bardowski J (2007) In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403. Acta Biochim Pol 54(1):71–78

    PubMed  CAS  Google Scholar 

  • Küster E, Hilbich T, Dahl MK, Hillen W (1999) Mutations in catabolite control protein CcpA separating growth effects from catabolite repression. J Bacteriol 181(13):4125–4128

    PubMed  Google Scholar 

  • Luesink EJ, van Herpen RE, Grossiord BP, Kuipers OP, de Vos WM (1998) Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30(4):789–798

    Article  PubMed  CAS  Google Scholar 

  • Otto R, ten Brink T, Veldkamp H, Konings WN (1983) The relation between growth rate and electrochemical proton gradient of Streptococcus cremoris. FEMS Microbiol Lett 16:69–74

    Article  Google Scholar 

  • Poolman B, Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170:700–707

    PubMed  CAS  Google Scholar 

  • Ramseier TM, Reizer J, Küster E, Hillen W, Saier MH Jr (1995) In vitro binding of the CcpA protein of Bacillus megaterium to cis-acting catabolite responsive elements (CREs) of Gram-positive bacteria. FEMS Microbiol Lett 129:207–214

    PubMed  CAS  Google Scholar 

  • Saier MH Jr, Chauvaux S, Cook GM, Deutscher J, Paulsen IT, Reizer J, Ye JJ (1996) Catabolite repression and inducer control in gram-positive bacteria. Microbiology 142:217–230

    Article  PubMed  Google Scholar 

  • Simons G, Nijhuis M, de Vos WM (1993) Integration and gene replacement in the Lactococcus lactis lac operon: induction of a cryptic phospho-beta-glucosidase in LacG-deficient strains. J Bacteriol 175(16):5168–5175

    PubMed  CAS  Google Scholar 

  • Sinha RP (1991) Genetic characterization of partial lactose-fermenting revertants from lactose-negative mutants of lactococci. Can J Microbiol 37:281–286

    Article  CAS  Google Scholar 

  • Titgemeyer F, Hillen W (2002) Global control of sugar metabolism: a Gram-positive solution. Antonie van Leeuwenhoek 82:59–71

    Article  PubMed  CAS  Google Scholar 

  • Wray LV Jr, Pettengill FK, Fisher SH (1994) Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J Bacteriol 176(7):1894–1902

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by KBN grant 6 P06G 055 20, the Polish–French scientific program Polonium and Marie Curie Host fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Bardowski.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalczyk, M., Cocaign-Bousquet, M., Loubiere, P. et al. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403. Arch Microbiol 189, 187–196 (2008). https://doi.org/10.1007/s00203-007-0308-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0308-8

Keywords

Navigation