Skip to main content
Log in

Aspergillus nidulans contains six possible fatty acyl-CoA synthetases with FaaB being the major synthetase for fatty acid degradation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Aspergillus nidulans can use a variety of fatty acids as sole carbon and energy sources via its peroxisomal and mitochondrial β-oxidation pathways. Prior to channelling the fatty acids into β-oxidation, they need to be activated to their acyl-CoA derivates. Analysis of the genome sequence identified a number of possible fatty acyl-CoA synthetases (FatA, FatB, FatC, FatD, FaaA and FaaB). FaaB was found to be the major long-chain synthetase for fatty acid degradation. FaaB was shown to localise to the peroxisomes, and the corresponding gene was induced in the presence of short and long chain fatty acids. Deletion of the faaB gene leads to a reduced/abolished growth on a variety of fatty acids. However, at least one additional fatty acyl-CoA synthetase with a preference for short chain fatty acids and a potential mitochondrial candidate (AN4659.3) has been identified via genome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Andrianopoulos A, Hynes MJ (1988) Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol 8:3532–3541

    PubMed  CAS  Google Scholar 

  • Armitt S, McCullough W, Roberts CF (1976) Analysis of acetate non-utilisating (acu) mutants in Aspergillus nidulans. J Gen Microbiol 92:263–282

    PubMed  CAS  Google Scholar 

  • Black PN, DiRusso CC (2003) Transmembrane movement of exogenous long chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol Mol Biol Rev 67:454–472

    Article  PubMed  CAS  Google Scholar 

  • Black PN, DiRusso CC (2007) Vectorial acylation: linking fatty acid transport and activation to metabolic trafficking. Novartis Found Symp 286:127–38; discussion 138–141, 162–163, 196–203

    Google Scholar 

  • Black PN, Zhang Q, Weimar JD, DiRusso CC (1997) Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem 272:4896–4903

    Article  PubMed  CAS  Google Scholar 

  • Boisnard S, Espagne E, Zickler D, Bourdais A, Riquet AL, Berteaux-Lecellier V (2009) Peroxisomal ABC transporters and β-oxidation during the life cycle of the filamentous fungus Podospora anserina. Fungal Genet Biol 46:55–66

    Article  PubMed  CAS  Google Scholar 

  • Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Connerton IF, Fincham JRS, Sanddeman RA, Hynes MJ (1990) Comparison and cross-species expression of the acetyl CoA synthetase genes of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 4:451–460

    Article  PubMed  CAS  Google Scholar 

  • Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56

    PubMed  CAS  Google Scholar 

  • Davis MA, Cobbett CS, Hynes MJ (1988) An amdS-lacZ fusion for studying gene regulation in Aspergillus. Gene 63:199–212

    Article  PubMed  CAS  Google Scholar 

  • DiRusso CC, Black PN (2004) Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system. J Biol Chem 279:49563–49566

    Article  PubMed  CAS  Google Scholar 

  • Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ, Murray SL, Duncan A, Khew GS, Davis MA (2006) Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans. Eukaryot Cell 5:794–805

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ, Murray SL, Khew GS, Davis MA (2008) Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans. Genetics 178:1355–1369

    Article  PubMed  CAS  Google Scholar 

  • Janssen PH, Schink B (1995) Catabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus. J Bacteriol 177:277–282

    PubMed  CAS  Google Scholar 

  • Knoll LJ, Johnson DR, Gordon JI (1994) Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faa1p, Faa2p, and Faa3p. J Biol Chem 269:16348–16356

    PubMed  CAS  Google Scholar 

  • Lee SB, Taylor JW (1990) Isolation of DNA from fungal mycelia and single spores. In: Innis MA, Gelfand DH, Sninsky JS, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 282–287

    Google Scholar 

  • Lee D, Ellard M, Wanner LA, Davis KR, Douglas CJ (1995) The Arabidopsis thaliana 4-coumarate:CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Mol Biol 28:871–884

    Article  PubMed  CAS  Google Scholar 

  • Maggio-Hall LA, Keller NP (2004) Mitochondrial beta-oxidation in Aspergillus nidulans. Mol Microbiol 54:1173–1185

    Article  PubMed  CAS  Google Scholar 

  • Maggio-Hall LA, Lyne P, Wolff JA, Keller NP (2008) A single acyl-CoA dehydrogenase is required for catabolism of isoleucine, valine and short-chain fatty acids in Aspergillus nidulans. Fungal Genet Biol 45:180–189

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM, Cronan JE (2004) The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem 279:37324–37333

    Article  PubMed  CAS  Google Scholar 

  • Morsczeck C, Berger S, Plum G (2001) The macrophage-induced gene (mig) of Mycobacterium avium encodes a medium-chain acyl-coenzyme A synthetase. Biochim Biophys Acta 1521:59–65

    PubMed  CAS  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    Article  PubMed  CAS  Google Scholar 

  • Reiser K, Davis MA, Hynes MJ (2009) AoxA is a major peroxisomal long chain fatty acyl-CoA oxidase required for beta-oxidation in A. nidulans. Curr Genet doi:10.1007/s00294-009-0286-2

  • Sambrook J, Fritsch EF, Maniatis F (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M (2008) Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling. FEBS J 275:2765–2778

    Article  PubMed  CAS  Google Scholar 

  • Spröte P, Brakhage AA, Hynes MJ (2009) Contribution of peroxisomes to penicillin biosynthesis in Aspergillus nidulans. Eukaryot Cell 8:421–423

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SJ, Morgenthaler J, Heinzer AK, Smith KD, Watkins PA (2000) Very long-chain acyl-CoA synthetases. J Biol Chem 275:35162–35169

    Article  PubMed  CAS  Google Scholar 

  • Szewczyk E, Andrianopoulos A, Davis MA, Hynes MJ (2001) A single gene produces mitochondrial, cyoplasmic, and peroxisomal NADP-dependant isocitrate dehydrogenase in Aspergillus nidulans. J Biol Chem 276:37722–37729

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Todd RB, Davis MA, Hynes MJ (2007) Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nat Protoc 2:811–821

    Article  PubMed  CAS  Google Scholar 

  • Weidner G, d’Enfert C, Koch A, Mol PC, Brakhage AA (1998) Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 59-monophosphate decarboxylase. Curr Genet 33:378–385

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Brock M, Keller NP (2004) Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. Genetics 168:785–794

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, DiRusso CC, Ctrnacta V, Black PN (2002) Fatty acid transport in Saccharomyces cerevisiae. Directed mutagenesis of FAT1 distinguishes the biochemical activities associated with Fat1p. J Biol Chem 277:31062–31071

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Tong F, Færgeman NJ, Borsting C, Black PN, DiRusso CC (2003) Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex. J Biol Chem 278:16414–16422

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Hynes.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiser, K., Davis, M.A. & Hynes, M.J. Aspergillus nidulans contains six possible fatty acyl-CoA synthetases with FaaB being the major synthetase for fatty acid degradation. Arch Microbiol 192, 373–382 (2010). https://doi.org/10.1007/s00203-010-0565-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0565-9

Keywords

Navigation