Skip to main content

Advertisement

Log in

Isolation and characterization of rat intestinal bacteria involved in biotransformation of (−)-epigallocatechin

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two intestinal bacterial strains MT4s-5 and MT42 involved in the degradation of (−)-epigallocatechin (EGC) were isolated from rat feces. Strain MT4s-5 was tentatively identified as Adlercreutzia equolifaciens. This strain converted EGC into not only 1-(3, 4, 5-trihydroxyphenyl)-3-(2, 4, 6-trihydroxyphenyl)propan-2-ol (1), but also 1-(3, 5-dihydroxyphenyl)-3-(2, 4, 6-trihydroxyphenyl)propan-2-ol (2), and 4′-dehydroxylated EGC (7). Type strain (JCM 9979) of Eggerthella lenta was also found to convert EGC into 1. Strain MT42 was identified as Flavonifractor plautii and converted 1 into 4-hydroxy-5-(3, 4, 5-trihydroxyphenyl)valeric acid (3) and 5-(3, 4, 5-trihydroxyphenyl)-γ-valerolactone (4) simultaneously. Strain MT42 also converted 2 into 4-hydroxy-5-(3, 5-dihydroxyphenyl)valeric acid (5), and 5-(3, 5-dihydroxyphenyl)-γ-valerolactone (6). Furthermore, F. plautii strains ATCC 29863 and ATCC 49531 were found to catalyze the same reactions as strain MT42. Interestingly, formation of 2 from EGC by strain MT4s-5 occurred rapidly in the presence of hydrogen supplied by syntrophic bacteria. Strain JCM 9979 also formed 2 in the presence of the hydrogen or formate. Strain MT4s-5 converted 1, 3, and 4 to 2, 5, and 6, respectively, and the conversion was stimulated by hydrogen, whereas strain JCM 9979 could catalyze the conversion only in the presence of hydrogen or formate. On the basis of the above results together with previous reports, the principal metabolic pathway of EGC and EGCg by catechin-degrading bacteria in gut tract is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Bolca S, Verstraete W (2010) Microbial equol production attenuates colonic methanogenesis and sulphidogenesis in vitro. Anaerobe 16:247–252

    Article  PubMed  CAS  Google Scholar 

  • Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W (2005) Isolation and characterisation of an equal-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 183:45–55

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Kanaya S, Nishikawa T, Hara H, Terada A, Ishigami T, Hara Y (1998) The influence of tea catechins on fecal flora of elderly residents in long-term care facilities. Ann Long-Term Care 6:43–48

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Ishida H, Takagaki A, Nanjo F, Maruo T, Ito C (2008) Metabolism of isoflavone from soy bean by Eggerthella sp. MT4s-5, part 1 Metabolism of daidzein, glycitein, and genistein. The 128th Annual Meeting of the Pharmaceutical Society of Japan, Abstract 2, p 87

  • Jin J-S, Hattori M (2012) Isolation and characterization of a human intestinal bacterium Eggerthella sp. CAT-1 capable of cleaving the C-ring of (+)-catechin and (−)-epicatechin, followed by p-dehydroxylation of the B-ring. Biol Pharm Bull 35:2252–2256

    Article  PubMed  CAS  Google Scholar 

  • Jin J-S, Zhao Y-F, Nakamura N, Akao T, Kakiuchi N, Min B-S, Hattori M (2007) Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria. Biol Pharm Bull 30:2113–2119

    Article  PubMed  CAS  Google Scholar 

  • Johnson R, Bryant S, Huntley AL (2012) Green tea and green tea catechin extracts: an overview of the clinical evidence. Maturitas 73:280–287

    Article  PubMed  CAS  Google Scholar 

  • Kida K, Suzuki M, Matsumoto N, Nanjo F, Hara Y (2000) Identification of biliary metabolites of (−)-epigallocatechin gallate in rats. J Agric Food Chem 48:4151–4155

    Article  PubMed  CAS  Google Scholar 

  • Kohri T, Matsumoto N, Yamakawa M, Suzuki M, Nanjo F, Hara Y, Oku N (2001) Metabolic fate of (−)-[4-3H] epigallocatechin gallate in rats after oral administration. J Agric Food Chem 49:4102–4112

    Article  PubMed  CAS  Google Scholar 

  • Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 144:8–14

    Article  CAS  Google Scholar 

  • Kuroda Y, Hara Y (2004) Health effects of tea and its catechins. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Kutschera M, Engst W, Blaut M, Braune A (2011) Isolation of catechin-converting human intestinal bacteria. J Appl Microbiol 111:165–175

    Article  PubMed  CAS  Google Scholar 

  • Lee M-J, Wang Z-Y, Li H, Chen L, Sun Y, Gobbo S, Balentine DA, Yang CS (1995) Analysis of plasma and urinary tea polyphenols in human subjects. Cancer Epidemiol Biomarkers Prev 4:393–399

    PubMed  CAS  Google Scholar 

  • Maruo T, Sakamoto M, Ito C, Toda T, Benno Y (2008) Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 58:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Minamida K, Ota K, Nishimukai M, Tanaka M, Abe A, Sone T, Tomita F, Hara H, Asano K (2008) Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol 58:1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Okano I, Watsuji T, Kakinuma T, Ueda K, Beppu T (1999) Establishing the independent culture of a strictly symbiotic bacterium Symbiobacterium thermophilum from its supporting Bacillus strain. Biosci Biotechnol Biochem 63:1083–1090

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto M, Takagaki A, Matsumoto K, Kato Y, Goto K, Benno Y (2009) Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. Int J Syst Evol Microbiol 59:1748–1753

    Article  PubMed  CAS  Google Scholar 

  • Sang S, Lee M-J, Yang I, Buckley B, Yang CS (2008) Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition. Rapid Commun Mass Spectrom 22:1567–1578

    Article  PubMed  CAS  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communication of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  PubMed  CAS  Google Scholar 

  • Stams AJM, Bok FAM, Plugge CM, Eekert MHA, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8:371–382

    Article  PubMed  CAS  Google Scholar 

  • Takagaki A, Nanjo F (2010) Metabolism of (−)-epigallocatechin gallate by rat intestinal flora. J Agric Food Chem 58:1313–1321

    Article  PubMed  CAS  Google Scholar 

  • Takagaki A, Otani S, Nanjo F (2011) Antioxidative activity of microbial metabolites of (−)-epigallocatechin gallate produced in rat intestines. Biosci Biotechnol Biochem 75:582–585

    Article  PubMed  CAS  Google Scholar 

  • Thawornkuno C, Tanaka M, Sone T, Asano K (2009) Biotransformation of daidzein to equol by crude enzyme from Asaccharobacter celatus AHU 1763 required an anaerobic environment. Biosci Biotechnol Biochem 73:1435–1438

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L-Q, Meselhy MR, Li Y, Nakamura N, Min B-S, Qin G-W, Hattori M (2001) The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chem Pharm Bull 49:1640–1643

    Article  PubMed  CAS  Google Scholar 

  • Yang CS, Wang X (2010) Green tea and cancer prevention. Nutr Cancer 62:931–937

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Matsumoto K. in our laboratories for analysis of 16S rRNA gene sequences of bacterial isolates. And we acknowledge the assistance of Andrea K. Suzuki (Mitsui Norin Co. Ltd.) in the review of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Takagaki.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagaki, A., Kato, Y. & Nanjo, F. Isolation and characterization of rat intestinal bacteria involved in biotransformation of (−)-epigallocatechin. Arch Microbiol 196, 681–695 (2014). https://doi.org/10.1007/s00203-014-1006-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1006-y

Keywords

Navigation