Skip to main content
Log in

A comparative study of the evolution of cellobiose utilization in Escherichia coli and Shigella sonnei

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The chb operon of Escherichia coli is involved in the utilization of chitooligosaccharides. While acquisition of two classes of mutations leading to altered regulation of the chb operon is necessary to confer the ability to utilize the glucose disaccharide cellobiose to wild-type strains of E. coli, in the closely related organism Shigella sonnei, Cel+ mutants arise relatively faster, requiring only a single mutational event. In Type I mutants, the insertion of IS600 at −21 leads to ChbR regulator-independent, constitutive expression of the operon. In Type II mutants, the insertion of IS2/600 within the distal binding site of the negative regulator NagC leads to ChbR-dependent cellobiose-inducible expression of the operon. These studies underscore the significance of strain background, specifically the diversity of transposable elements, in the evolution of novel metabolic functions. Constitutive expression of the chb operon also enables utilization of the aromatic β-glucosides arbutin and salicin, implying that the chb structural genes are inherently promiscuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai SK, Nandimath K, Mahadevan S (2010) Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon. Arch Microbiol 192:821–833

    Article  CAS  PubMed  Google Scholar 

  • Kachroo AH, Kancherla AK, Singh NS, Varshney U, Mahadevan S (2007) Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose. Mol Microbiol 66:1382–1395

    CAS  PubMed  Google Scholar 

  • Keyhani NO, Roseman S (1997) Wild-type Escherichia coli grows on the chitin disaccharide, N, N′-diacetylchitobiose, by expressing the cel operon. Proc Natl Acad Sci USA 94:14367–14371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyhani NO, Bacia K, Roseman S (2000a) The transport/phosphorylation of N, N′-diacetylchitobiose in Escherichia coli. Characterization of phospho-IIB(Chb) and of a potential transition state analogue in the phosphotransfer reaction between the proteins IIA(Chb) AND IIB(Chb). J Biol Chem 275:33102–33109

    Article  CAS  PubMed  Google Scholar 

  • Keyhani NO, Boudker O, Roseman S (2000b) Isolation and characterization of IIAChb, a soluble protein of the enzyme II complex required for the transport/phosphorylation of N, N′-diacetylchitobiose in Escherichia coli. J Biol Chem 275:33091–33101

    Article  CAS  PubMed  Google Scholar 

  • Keyhani NO, Wang LX, Lee YC, Roseman S (2000c) The chitin disaccharide, N, N′-diacetylchitobiose, is catabolized by Escherichia coli and is transported/phosphorylated by the phosphoenolpyruvate:glycose phosphotransferase system. J Biol Chem 275:33084–33090

    Article  CAS  PubMed  Google Scholar 

  • Kharat AS, Mahadevan S (2000) Analysis of the beta-glucoside utilization (bgl) genes of Shigella sonnei: evolutionary implications for their maintenance in a cryptic state. Microbiology 146(Pt 8):2039–2049

    Article  CAS  PubMed  Google Scholar 

  • Kricker M, Hall BG (1984) Directed evolution of cellobiose utilization in Escherichia coli K12. Mol Biol Evol 1:171–182

    CAS  PubMed  Google Scholar 

  • Lan R, Reeves PR (2002) Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect 4:1125–1132

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Parker LL, Hall BG (1990a) Mechanisms of activation of the cryptic cel operon of Escherichia coli K12. Genetics 124:473–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker LL, Hall BG (1990b) Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Genetics 124:455–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick WM, Quandt EM, Swartzlander DB, Matsumura I (2007) Multicopy suppression underpins metabolic evolvability. Mol Biol Evol 24:2716–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Yang J, Jin Q (2009) The molecular evolutionary history of Shigella spp. and enteroinvasive Escherichia coli. Infect Genet Evol 9:147–152

    Article  CAS  PubMed  Google Scholar 

  • Plumbridge J, Pellegrini O (2004) Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol 52:437–449

    Article  CAS  PubMed  Google Scholar 

  • Pupo GM, Lan R, Reeves PR (2000) Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 97:10567–10572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shepherd JG, Wang L, Reeves PR (2000) Comparison of O-antigen gene clusters of Escherichia coli (Shigella) sonnei and Plesiomonas shigelloides O17: sonnei gained its current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect Immun 68:6056–6061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Mukerji M, Mahadevan S (1995) Transcriptional activation of the Escherichia coli bgl operon: negative regulation by DNA structural elements near the promoter. Mol Microbiol 17:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Singh NS, Das G, Seshadri A, Sangeetha R, Varshney U (2005) Evidence for a role of initiation factor 3 in recycling of ribosomal complexes stalled on mRNAs in Escherichia coli. Nucl Acids Res 33:5591–5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J, Ruvinov SB, Freedberg DI, Hall BG (1999) Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases. J Bacteriol 181:7339–7345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma SC, Mahadevan S (2012) The chbG gene of the chitobiose (chb) operon of Escherichia coli encodes a chitooligosaccharide deacetylase. J Bacteriol 194:4959–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock DM et al (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucl Acids Res 17:3469–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright BE (2004) Stress-directed adaptive mutations and evolution. Mol Microbiol 52:643–650

    Article  CAS  PubMed  Google Scholar 

  • Yang F et al (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucl Acids Res 33:6445–6458

    Article  PubMed  PubMed Central  Google Scholar 

  • Zangoui P, Vashishtha K, Mahadevan S (2015) Evolution of aromatic beta-glucoside utilization by successive mutational steps in Escherichia coli. J Bacteriol 197:710–716

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an institutional grant from the Department of Biotechnology (DBT), Govt. of India, to the Indian Institute of Science and infrastructural support from the Department of Science and Technology (DST) under the FIST Program and the Universities Grants Commission (UGC), Govt. of India. AMJ thanks the Council for Scientific and Industrial Research (CSIR), Govt. of India, for a senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramony Mahadevan.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, A.M., Sonowal, R. & Mahadevan, S. A comparative study of the evolution of cellobiose utilization in Escherichia coli and Shigella sonnei . Arch Microbiol 199, 247–257 (2017). https://doi.org/10.1007/s00203-016-1299-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1299-0

Keywords

Navigation