Skip to main content
Log in

Insights into metabolism and sodium chloride adaptability of carbaryl degrading halotolerant Pseudomonas sp. strain C7

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas sp. strain C7 isolated from sediment of Thane creek near Mumbai, India, showed the ability to grow on glucose and carbaryl in the presence of 7.5 and 3.5% of NaCl, respectively. It also showed good growth in the absence of NaCl indicating the strain to be halotolerant. Increasing salt concentration impacted the growth on carbaryl; however, the specific activity of various enzymes involved in the metabolism remained unaffected. Among various enzymes, 1-naphthol 2-hydroxylase was found to be sensitive to chloride as compared to carbaryl hydrolase and gentisate 1,2-dioxygenase. The intracellular concentration of Cl ions remained constant (6–8 mM) for cells grown on carbaryl either in the presence or absence of NaCl. Thus the ability to adapt to the increasing concentration of NaCl is probably by employing chloride efflux pump and/or increase in the concentration of osmolytes as mechanism for halotolerance. The halotolerant nature of the strain will be beneficial to remediate carbaryl from saline agriculture fields, ecosystems and wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CH:

Carbaryl hydrolase

1NH:

1-Naphthol 2-hydroxylase

GDO:

Gentisate dioxygenase

C23DO:

Catechol 2,3-dioxygenase

PDO:

Protocatechuate 3,4-dioxygenase

References

  • Arulazhagan P, Vasudevan N (2011) Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62:388–394

    Article  CAS  PubMed  Google Scholar 

  • Arulazhagan P, Vasudevan N, Yeom IT (2010) Biodegradation of polycyclic aromatic hydrocarbon by bacterial consortium isolated from marine environment. Int J Environ Sci Tech 7:639–652

    Article  CAS  Google Scholar 

  • Bastos AE, Moon DH, Rossi A, Trevors JT, Tsai SM (2000) Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples. Arch Microbiol 174:346–352

    Article  CAS  PubMed  Google Scholar 

  • Bedard DL, Wagner RE, Brennan MJ, Haberl ML, Brown JF Jr (1987) Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl Environ Microbiol 53:1094–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berlendis S, Cayol JL, Verhe F, Laveau S, Tholozan JL, Ollivier B, Auria R (2010) First evidence of aerobic biodegradation of BTEX compounds by pure cultures of Marinobacter. Appl Biochem Biotechnol 160:1992–1999

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chapalmadugu S, Chaudhry GR (1993) Isolation of a constitutively expressed enzyme for hydrolysis of carbaryl in Pseudomonas aeruginosa. J Bacteriol 175:6711–6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciulla RA, Diaz MR, Taylor BF, Roberts MF (1997) Organic osmolytes in aerobic bacteria from mono lake, an alkaline, moderately hypersaline environment. Appl Environ Microbiol 63:220–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford RL, McCoy E, Harkin JM, Kirk TK, Obst JR (1973) Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents. Appl Microbiol 26:176–184

  • Dalvi S, Azetsu S, Patrauchan MA, Aktas DF, Fathepure BZ (2012) Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. strain Rozel, isolated from a hypersaline environment. Appl Environ Microbiol 8:7309–7316

    Article  Google Scholar 

  • Dalvi S, Youssef NH, Fathepure BZ (2016) Microbial community structure analysis of a benzoate-degrading halophilic archaeal enrichment. Extremophiles 20:311–321

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CC, da Fonseca MM (2005) Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol Ecol 51:389–399

    Article  PubMed  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173

  • Feng TC, Cui CZ, Dong F, Feng YY, Liu YD, Yang XM (2012) Phenanthrene biodegradation by halophilic Martelella sp. AD-3. J Appl Microbiol 113:779–789

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa H, Hayashi O (1968) Protocatechuate 3,4-dioxygenase. I. Crystallization and characterization. J Biol Chem 243:2673–2681

    CAS  PubMed  Google Scholar 

  • Galinski E, Truper H (1994) Microbial behavior in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Garcia MT, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Fang T, Wang C, Huang Y, Tian F, Cui Q, Wang H (2015) Isolation and characterization of two novel halotolerant catechol 2,3-dioxygenases from a halophilic bacterial consortium. Sci Rep 5:17603

  • Hansen JB, Olsen RH (1978) Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J Bacteriol 135:227–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodkinson B, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180

    Article  CAS  Google Scholar 

  • Huang L, Hu H, Tang H, Liu Y, Xu P, Shi J, Lin K, Luo Q, Cui C (2015) Identification and characterization of a novel gentisate 1,2-dioxygenase gene from a halophilic Martelella strain. Sci Rep 5:14307

  • Imhoff JF, Rodriguez-Valera F (1984) Betaine is the main compatible solute of halophilic eubacteria. J Bacteriol 160:478–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jencova V, Strnad H, Chodora Z, Ulbrich P, Vlcek C, Hickey WJ, Paces V (2008) Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from Achromobacter xylosoxidans A8. Res Microbiol 159:118–127

    Article  CAS  PubMed  Google Scholar 

  • Kendrick PN, Trim AJ, Atwal JK, Brown PM (1991) Direct gas chromatographic determination of carbaryl residues in honeybees (Apis mellifera L.) using a nitrogen-phosphorus detector with confirmation by formation of a chemical derivative. Bull Environ Contam Toxicol 46:654–661

    Article  CAS  PubMed  Google Scholar 

  • Killham K, Firestone MK (1984) Salt stress control of intracellular solutes in Streptomycetes indigenous to saline soils. Appl Environ Microbiol 47:301–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16 S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kojima Y, Fujisawa H, Nakazawa A, Nakazawa T, Kanetsuna F, Taniuchi H, Nozaki M, Hayaishi O (1967) Studies on pyrocatechase. I. Purification and spectral properties. J Biol Chem 242:3270–3278

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Larkin MJ, Day MJ (1986) The metabolism of carbaryl by three bacterial isolates, Pseudomonas spp. (NCIB 12042 & 12043) and Rhodococcus sp. (NCIB 12038) from garden soil. J Appl Bacteriol 60:233–242

    Article  CAS  PubMed  Google Scholar 

  • Mazzoli R, Pessione E, Giuffrida MG, Fattori P, Barello C, Giunta C, Lindley ND (2007) Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures. Arch Microbiol 188:55–68

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Venkateswarlu K, Naidu R (2011) Effects of carbaryl and 1-naphthol on soil population of cyanobacteria and microalgae and select cultures of diazotrophic cyanobacteria. Bull Environ Contam Toxicol 87:324–329

    Article  CAS  PubMed  Google Scholar 

  • Mille G, Almallah M, Bianchi M, Wambeke F, Bertrand JC (1991) Effect of salinity on petroleum biodegradation. Fresenius J. Anal Chem 339:788–791

    Article  CAS  Google Scholar 

  • Mostert MA, Schoeman AS, van der Merwe M (2002) The relative toxicities of insecticides to earthworms of the Pheretima group (Oligochaeta). Pest Manag Sci 58:446–450

    Article  CAS  PubMed  Google Scholar 

  • Müller V, Oren A (2003) Metabolism of chloride in halophilic prokaryotes. Extremophiles 7:261–266

    Article  PubMed  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Pires RF, Franco MR Jr (2012) Solubility of salicylic acid in water + salt (NaCl, KCl, NaBr, Na2SO4 and K2SO4) at 293.5–313.3 K. Fluid Phase Equilib 330:48–51

  • Ren L, Shi Y, Jia Y, Yan Y (2015) Genome sequence of Arthrobacter sp. YC-RL1, an aromatic compound-degrading bacterium. Genome Announc 3. doi:10.1128/genomeA.00749-15.

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

  • Saab J, Naccoul RA, Stephan J, Goutaudier C, Ouaini R, Mokbel I, Ouaini N, Jose J (2009) Mass transfer of carbaryl from pure water to salt aqueous solution: result comparison between sea and lab-made water. Water Air Soil Pollut 209:241–249

    Article  Google Scholar 

  • Saum SH, Müller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189:6968–6975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saum SH, Müller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:4

  • Saum SH, Pfeiffer F, Palm P, Rampp M, Schuster SC, Muller V, Oesterhelt D (2013) Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus. Environ Microbiol 15:1619–1633

    Article  CAS  PubMed  Google Scholar 

  • Schultz SG, Wilson NL, Epstein W (1962) Cation transport in Escherichia coli. II. Intracellular chloride concentration. J Gen Physiol 46:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz FP (1977) Determination of temperature dependence of solubilities of polycyclic aromatic hydrocarbons in aqueous solutions by a fluorescence method. J Chem Eng Data 22:273–277

    Article  CAS  Google Scholar 

  • Singh R, Trivedi VD, Phale PS (2013) Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6. Arch Microbiol 195:521–535

    Article  CAS  PubMed  Google Scholar 

  • Smulders CJ, Bueters TJ, Van Kleef RG, Vijverberg HP (2003) Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase. Toxicol Appl Pharmacol 193:139–146

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Ingraham JL (1954) Protocatechuic acid oxidase. J Biol Chem 210:799–808

    CAS  PubMed  Google Scholar 

  • Suarez M, Ferrer E, Garrido-Pertierra A (1995) Purification and characterization of the 3-hydroxybenzoate-6-hydroxylase from Klebsiella pneumoniae. FEMS Microbiol Lett 126:283–290

    Article  CAS  PubMed  Google Scholar 

  • Swetha VP, Phale PS (2005) Metabolism of carbaryl via 1,2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strains C4, C5, and C6. Appl Environ Microbiol 71:5951–5956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SwethaVP, Basu A, Phale PS (2007) Purification and characterization of 1-naphthol-2-hydroxylase from carbaryl-degrading Pseudomonas strain C4. J Bacteriol 189:2660–2666

    Article  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol 14:311–356

    Article  CAS  PubMed  Google Scholar 

  • You Y, Shim J, Cho CH, Ryu MH, Shea PJ, Kamala-Kannan S, Chae JC, Oh BT (2013) Biodegradation of BTEX mixture by Pseudomonas putida YNS1 isolated from oil-contaminated soil. J Basic Microbiol 53:469–475

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

VDT acknowledges CSIR, Govt. of India for senior research fellowship, AB and MV to IIT-B for IRCC internship, KG to IIT-B for teaching assistantship. PP acknowledges research grant from Board of Research in Nuclear Sciences, Govt. of India, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant S. Phale.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Matthias Boll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4186 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, V.D., Bharadwaj, A., Varunjikar, M.S. et al. Insights into metabolism and sodium chloride adaptability of carbaryl degrading halotolerant Pseudomonas sp. strain C7. Arch Microbiol 199, 907–916 (2017). https://doi.org/10.1007/s00203-017-1363-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1363-4

Keywords

Navigation