Skip to main content
Log in

Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 μM of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ATSDR (2000) Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry, Atlanta

  • Azri S, Gandolfi AJ, Brendel K (1990) Carbon tetrachloride toxicity in precision cut tissue slices. In vitro Toxicol 3:127–138

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  • Cadrin M, Hovington H, Marceau N, McFarlane-Anderson N (2000) Early perturbations in keratin and actin gene expression and fibrillar organisation in griseofulvin-fed mouse liver. J Hepatol 33:199–207

    Article  PubMed  CAS  Google Scholar 

  • Calnek D, Quaroni A (1993) Differential localization by in situ hybridization of distinct keratin mRNA species during intestinal epithelial cell development and differentiation. Differentiation 53:95–104

    Article  PubMed  CAS  Google Scholar 

  • Caulin C, Ware CF, Magin TM, Oshima RG (2000) Keratin dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol 149:17–22

    Article  PubMed  CAS  Google Scholar 

  • Centeno JA, Mullick FG, Martinez L, Page NP, Gibb H, Longfellow D, Thompson C, Ladich ER (2002) Pathology related to chronic arsenic exposure. Environ Health Perspect 110:883–886

    PubMed  CAS  Google Scholar 

  • Chen YH, Wang JP, Wang H, Sun MF, Wei LZ, Wei W, Xu DX (2005) Lipopolysaccharide treatment downregulates the expression of the pregnane X receptor, cyp3a11 and mdr1a genes in mouse placenta. Toxicology 211:242–252

    Article  PubMed  CAS  Google Scholar 

  • Coulombe PA, Omary MB (2002) ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14:110–122

    Article  PubMed  CAS  Google Scholar 

  • De Flora S, Izzotti A, D’Agostini F, Balansky RM (2001) Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 22:999–1013

    Article  PubMed  Google Scholar 

  • Denk H, Stumptner C, Zatloukal K (2000) Mallory bodies revisited. J Hepatol 32:689–702

    Article  PubMed  CAS  Google Scholar 

  • Fickert P, Trauner M, Fuchsbichler A, Stumptner C, Zatloukal K, Denk H (2002) Cytokeratins as targets for bile acid-induced toxicity. Am J Pathol 160:491–499

    PubMed  CAS  Google Scholar 

  • Gilbert S, Loranger A, Daigle N, Marceau N (2001) Simple epithelium keratins 8 and 8 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol 154:763–773

    Article  PubMed  CAS  Google Scholar 

  • Han SG, Castranova V, Vallyathan V (2005) Heat shock protein 70 as an indicator of early lung injury caused by exposure to arsenic. Mol Cell Biochem 277:153–164

    Article  PubMed  CAS  Google Scholar 

  • Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal Ions. Free Radic Biol Med 40:138–145

    Article  PubMed  CAS  Google Scholar 

  • Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A (2004) The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicol Appl Pharmacol 198:458–467

    Article  PubMed  CAS  Google Scholar 

  • Hughes MF, Kitchin KT (2006) Arsenic, oxidative stress and carcinogenesis. In: Oxidative stress. Disease and cancer, chapter 29

  • Hughes MF, Kenyon EM, Edwards BC, Mitchell CT, Del Razo LM, Thomas DJ (2003) Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol Appl Pharmacol 191:202–210

    Article  PubMed  CAS  Google Scholar 

  • IPCS/WHO (2001) IPCS (International Programme on Chemical Safety) Environmental Health Criteria 224. Arsenic and arsenic compounds, 2nd edn. World Health Organization, Geneva

  • Izquierdo-Vega JA, Soto CA, Sanchez-Peña LC, De Vizcaya-Ruiz A, Del Razo LM (2006) Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicol Lett 160:135–142

    Article  PubMed  CAS  Google Scholar 

  • Kelly GS (1998) Clinical applications of N-acetylcysteine. Altern Med Rev 3:114–127

    PubMed  CAS  Google Scholar 

  • Kim YH, Park EJ, Han ST, Park JW, Kwon TK (2005) Arsenic trioxide induces Hsp70 expression via reactive oxygen species and JNK pathway in MDA231 cells. Life Sci 77:2783–2793

    Article  PubMed  CAS  Google Scholar 

  • Kitchin KT, Ahmad S (2003) Oxidative stress as a possible mode of action for arsenic carcinogenesis. Toxicol Lett 137:3–13

    Article  PubMed  CAS  Google Scholar 

  • Ku NO, Michie SA, Soetikno RM, Resurrección EZ, Broome RL, Omary MB (1998) Mutation of a major keratin phosphorylation site predisposes to hepatotoxic injury in transgenic mice. J Cell Bio 143:2023–2032

    Article  CAS  Google Scholar 

  • Ku NO, Darling JM, Krams SM, Esquivel CO, Keeffe EB, Sibley RK (2003) Keratin 8 and 18 mutations are risk factors for developing liver disease of multiple etiologies. Proc Natl Acad Sci USA 100:6063–6068

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Liao J, Lowthert LA, Ku NO, Fernandez R, Omary MB (1995) Dynamics of human keratin 18 phosphorylation: polarized distribution of phosphorylated keratins in simple epithelial tissues. J Cell Biol 131:291–1301

    Article  Google Scholar 

  • Liu J, Xie Y, Ward JM, Diwan BA, Waalkes MP (2004) Toxicogenomics analysis of aberrant gene expression in liver tumors and non tumorous livers of adult mice exposed in utero to inorganic arsenic. Toxicol Sci 77:249–257

    Article  PubMed  CAS  Google Scholar 

  • Moll R (1993) Cytokeratins as markers of differentiation. Expression profiles in epithelia and epithelial tumors. Veroff Pathol 142:1–197

    PubMed  CAS  Google Scholar 

  • Moll R, Franke W, Schiller D, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    Article  PubMed  CAS  Google Scholar 

  • Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351:2087–100

    Article  PubMed  CAS  Google Scholar 

  • Patrick L (2003) Toxic metals and antioxidants: part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8:106–128

    PubMed  Google Scholar 

  • Ramírez P, Del Razo LM, Gutierrez-Ruíz MC, Gonsebatt ME (2000) Arsenite induces DNA–protein crosslinks and cytokeratin expression in the WRL-68 human hepatic cell line. Carcinogenesis 21:701–706

    Article  PubMed  Google Scholar 

  • Rhodes K, Oshima RG (1998) A regulatory element of the human keratin 18 gene with AP-1-dependent promoter activity. J Biol Chem 273:26534–26542

    Article  PubMed  CAS  Google Scholar 

  • Santra A, Chowdhury A, Ghatak S, Biswas A, Dhali GK (2007) Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by n-acetylcysteine. Toxicol Appl Pharm. doi:10.1016/j.taap.2006.12.029

  • Sudheer AR, Muthukumaran S, Devipriya N, Menon VP (2007) Ellagic acid, a natural polyphenol protects rat peripheral blood lymphocytes against nicotine-induced cellular and DNA damage in vitro: with the comparison of N-acetylcysteine. Toxicology 230:11–21

    Article  PubMed  CAS  Google Scholar 

  • Tao GZ, Toivola DM, Zhong B, Michie SA, Resurreccion EZ, Tamai Y, Taketo MM, Omary MB (2003) Keratin-8 null mice have different gallbladder and liver susceptibility to lithogenic diet-induced injury. J Cell Sci 116:4629–4638

    Article  PubMed  CAS  Google Scholar 

  • Thomas DJ, Waters SB, Styblo M (2004) Elucidating the pathway for arsenic methylation. Toxicol Appl Pharmacol 198:319–326

    Article  PubMed  CAS  Google Scholar 

  • Wei M, Arnold L, Cano M, Cohen SM (2005) Effects of co-administration of antioxidants and arsenicals on the rat urinary bladder epithelium. Toxicol Sci 83:237–45

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Okada S (1994) Induction of lung-specific DNA-damage by metabolically methylated arsenics via the production of free-radicals. Environ Health Perspect 102:37–40

    Article  PubMed  CAS  Google Scholar 

  • Zatloukal K, Stumptner C, Lehner M, Denk H, Baribault H, Eshkind LG, Franke WW (2000) Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies. Am J Pathol 156:1263–1274

    PubMed  CAS  Google Scholar 

  • Zhong B, Zhou Q, Toivola DM, Tao GZ, Resurrección EZ, Omary MB (2003) Keratin-8 null mice have different gallbladder and liver susceptibility to lithogenic diet-induced injury. J Cell Sci 116:4629–4638

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by PAPIIT IN203405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramírez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonsebatt, M.E., Del Razo, L.M., Cerbon, M.A. et al. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression. Arch Toxicol 81, 619–626 (2007). https://doi.org/10.1007/s00204-007-0192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0192-7

Keywords

Navigation