Skip to main content
Log in

Bile canalicular dynamics in hepatocyte sandwich cultures

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Many substances are hepatotoxic due to their ability to cause intrahepatic cholestasis. Therefore, there is a high demand for in vitro systems for the identification of cholestatic properties of new compounds. Primary hepatocytes cultivated in collagen sandwich cultures are known to establish bile canaliculi which enclose secreted biliary components. Cholestatic compounds are mainly known to inhibit bile excretion dynamics, but may also alter canalicular volume, or hepatocellular morphology. So far, techniques to assess time-resolved morphological changes of bile canaliculi in sandwich cultures are not available. In this study, we developed an automated system that quantifies dynamics of bile canaliculi recorded in conventional time-lapse image sequences. We validated the hepatocyte sandwich culture system as an appropriate model to study bile canaliculi in vitro by showing structural similarity measured as bile canaliculi length per hepatocyte to that observed in vivo. Moreover, bile canalicular excretion kinetics of CMFDA (5-chloromethylfluorescein diacetate) in sandwich cultures resembled closely the kinetics observed in vivo. The developed quantification technique enabled the quantification of dynamic changes in individual bile canaliculi. With this technique, we were able to clearly distinguish between sandwich cultures supplemented with dexamethasone and insulin from control cultures. In conclusion, the automated quantification system offers the possibility to systematically study the causal relationship between disturbed bile canalicular dynamics and cholestasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beattie L, Peltan A, Maroof A et al (2010) Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells. PLoS Pathog 6(3):e1000805. doi:10.1371/journal.ppat.1000805

    Article  PubMed Central  PubMed  Google Scholar 

  • Bi YA, Kazolias D, Duignan DB (2006) Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos 34(9):1658–1665. doi:10.1124/dmd.105.009118

    Article  CAS  PubMed  Google Scholar 

  • Dunn JC, Yarmush ML, Koebe HG, Tompkins RG (1989) Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J 3(2):174–177

    CAS  PubMed  Google Scholar 

  • Ekani-Nkodo A, Fygenson DK (2003) Size exclusion and diffusion of fluoresceinated probes within collagen fibrils. Phys Rev E 67(2 Pt 1):021909

    Article  CAS  Google Scholar 

  • Erlinger S (1978) Cholestasis: pump failure, microvilli defect, or both? Lancet 1(8063):533–534

    Article  CAS  PubMed  Google Scholar 

  • Godoy P, Hengstler JG, Ilkavets I et al (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49(6):2031–2043. doi:10.1002/hep.22880

    Article  CAS  PubMed  Google Scholar 

  • Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530. doi:10.1007/s00204-013-1078-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hammad S, Hoehme S, Friebel A et al (2014) Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis. Arch Toxicol 88(5):1161–1183. doi:10.1007/s00204-014-1243-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hewitt NJ, Lechon MJ, Houston JB et al (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39(1):159–234. doi:10.1080/03602530601093489

    Article  CAS  PubMed  Google Scholar 

  • Kostrubsky VE, Strom SC, Hanson J et al (2003) Evaluation of hepatotoxic potential of drugs by inhibition of bile-acid transport in cultured primary human hepatocytes and intact rats. Toxicol Sci 76(1):220–228. doi:10.1093/toxsci/kfg217

    Article  CAS  PubMed  Google Scholar 

  • Kotani N, Maeda K, Watanabe T et al (2011) Culture period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes. Drug Metab Dispos 39(9):1503–1510. doi:10.1124/dmd.111.038968

    Article  CAS  PubMed  Google Scholar 

  • LeCluyse EL, Audus KL, Hochman JH (1994) Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol 266(6 Pt 1):C1764–C1774

    CAS  PubMed  Google Scholar 

  • Liu X, Chism JP, LeCluyse EL, Brouwer KR, Brouwer KL (1999a) Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab Dispos 27(6):637–644

    CAS  PubMed  Google Scholar 

  • Liu X, LeCluyse EL, Brouwer KR et al (1999b) Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am J Physiol 277(1 Pt 1):G12–G21

    CAS  PubMed  Google Scholar 

  • Liu X, LeCluyse EL, Brouwer KR, Lightfoot RM, Lee JI, Brouwer KL (1999c) Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther 289(3):1592–1599

    CAS  PubMed  Google Scholar 

  • Luttringer O, Theil FP, Lave T, Wernli-Kuratli K, Guentert TW, de Saizieu A (2002) Influence of isolation procedure, extracellular matrix and dexamethasone on the regulation of membrane transporters gene expression in rat hepatocytes. Biochem Pharmacol 64(11):1637–1650

    Article  CAS  PubMed  Google Scholar 

  • Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605. doi:10.1002/dvg.20335

    Article  CAS  PubMed  Google Scholar 

  • Oda M, Phillips MJ (1977) Bile canalicular membrane pathology in cytochalasin B-induced cholestasis. Lab Invest 37(4):350–356

    CAS  PubMed  Google Scholar 

  • Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407(3):313–319

    Article  CAS  PubMed  Google Scholar 

  • Oshio C, Phillips MJ (1981) Contractility of bile canaliculi: implications for liver function. Science 212(4498):1041–1042

    Article  CAS  PubMed  Google Scholar 

  • Padda MS, Sanchez M, Akhtar AJ, Boyer JL (2011) Drug-induced cholestasis. Hepatology 53(4):1377–1387. doi:10.1002/hep.24229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips MJ, Oshio C, Miyairi M, Katz H, Smith CR (1982) A study of bile canalicular contractions in isolated hepatocytes. Hepatology 2(6):763–768

    Article  CAS  PubMed  Google Scholar 

  • Rippin SJ, Hagenbuch B, Meier PJ, Stieger B (2001) Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 33(4):776–782. doi:10.1053/jhep.2001.23433

    Article  CAS  PubMed  Google Scholar 

  • Thibault N, Claude JR, Ballet F (1992) Actin filament alteration as a potential marker for cholestasis: a study in isolated rat hepatocyte couplets. Toxicology 73(3):269–279

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Tsukada N, Smith CR, Phillips MJ (1991) Motility of bile canaliculi in the living animal: implications for bile flow. J Cell Biol 113(5):1069–1080

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially funded by the European Commission Seventh Framework Programme CANCERSYS (FP7-2008-2011; Grant #223188), NOTOX (FP7-2007-2013; Grant #267038), DETECTIVE (FP7-2007-2013; Grant #266838), the Virtual Liver Network initiative of the German Federal Ministry of Education and Research (Grant #03157399) and by the UK Medical Research Council (Grant #G0802620).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raymond Reif or Mats Jirstrand.

Ethics declarations

Conflict of interest

None.

Additional information

Raymond Reif and Johan Karlsson have contributed equally to this work. Mats Jirstrand and Jan G. Hengstler have a shared senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Area.xlsx

Determined bile canalicular area for the control and dex/ins cultures (XLSX 333 kb)

Morphology.xlsx

Quantified morphology of hepatocytes in culture and in vivo (XLSX 22 kb)

Video1.mpg

Maturation process of a control sandwich culture (MPG 3614 kb)

Video2.mpg

CMFDA excretion into bile canaliculi in vivo (MPG 3368 kb)

Video3.mpg

CMFDA excretion into bile canaliculi sandwich culture (MPG 3130 kb)

Video4.mpg

Segmentation and quantification of bile canalicular volume (MPG 7862 kb)

Hepatocyte sandwich culture control 1 (MPG 1608 kb)

Video6.mpg

Hepatocyte sandwich culture control 2 (MPG 5658 kb)

Video7.mpg

Hepatocyte sandwich culture control 3 (MPG 7568 kb)

Video8.mpg

Hepatocyte sandwich culture control 4 (MPG 9006 kb)

Hepatocyte sandwich supplemented with dexamethason insulin 1 (MPG 2414 kb)

Video10.mpg

Hepatocyte sandwich supplemented with dexamethason insulin 2 (MPG 11904 kb)

Video11.mpg

Hepatocyte sandwich supplemented with dexamethason insulin 3 (MPG 7254 kb)

Video12.mpg

Hepatocyte sandwich supplemented with dexamethason insulin 4 (MPG 6868 kb)

Video13.mpg

Hepatocyte sandwich supplemented with dexamethason insulin 5 (MPG 9212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reif, R., Karlsson, J., Günther, G. et al. Bile canalicular dynamics in hepatocyte sandwich cultures. Arch Toxicol 89, 1861–1870 (2015). https://doi.org/10.1007/s00204-015-1575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1575-9

Keywords

Navigation