Skip to main content
Log in

Influence of testosterone on phase II metabolism and availability of soy isoflavones in male Wistar rats

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Genistein and daidzein are the main isoflavones in soy. Their potential beneficial or adverse effects in males like the prevention of prostate cancer or the impact on reproductive functions are controversially discussed. Major determinants of their bioactivity are the absorption and biotransformation of isoflavones. In this study, we focused on the influence of testosterone on plasma availability and phase II metabolism of isoflavones. Male Wistar rats, receiving an isoflavones rich diet, were randomized into three groups: Two groups were orchiectomized (ORX) at postnatal day (PND) 80 and treated for 11 days with testosterone propionate (TP) (ORX TP group) or a vehicle (ORX group) after a 7 days lasting hormonal decline. The third group served as control and remained intact. Rats were sacrificed at PND 98. ORX rats had reduced isoflavones plasma levels. Differently regulated mRNA expressions of transporters relevant for transport of phase II metabolites in liver and kidney may be responsible for this reduction, more precisely Slc10a1 and Slc21a1 in kidney as well as Slc22a8 in liver. While main phase II metabolites in intact rats were disulfates and sulfoglucuronides, the amount of sulfate conjugates was significantly diminished by ORX. In accordance with that, mRNA expression of different sulfotransferases was reduced in liver by ORX. The observed effects could be almost restored by TP treatment. In conclusion, testosterone, and likely further androgens, has a huge impact on phase II metabolism and availability of isoflavones by influencing the expression of different sulfotransferases and transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

1A:

Cytochrome-c-oxidase subunit 1A

Abc:

ATP-binding cassette transporters

Bcrp:

Breast cancer resistance protein

DAI:

Daidzein

DS:

Disulfate

G:

Glucuronide

GEN:

Genistein

ISO:

Isoflavones

Mrp:

Multidrug resistance-associated protein

Ntcp:

Na+-taurocholate cotransporting polypeptide

Oat:

Organic anion transporter

Oatp:

Organic anion transporting polypeptide

ORX:

Orchiectomy

PND:

Postnatal day

S:

Sulfate

Slc:

Solute carrier

Sult:

Sulfotransferase

TP:

Testosterone propionate

Ugt:

UDP-glucuronosyltransferase

References

  • Alnouti Y, Klaassen CD (2010) Mechanisms of gender-specific regulation of mouse sulfotransferases (Sults). Xenobiotica 41:187–197. doi:10.3109/00498254.2010.535923

    Article  PubMed  Google Scholar 

  • Ando S, Aquila S, Beraldi E, Canonaco M, Panno ML, Valenti A, Dessi-Fulgheri F (1988) Physiological changes in androgen plasma levels with elapsing of time from castration in adult male rats. Horm Metab Res 20:96–99

    Article  CAS  PubMed  Google Scholar 

  • Blanchard RL, Freimuth RR, Buck J, Weinshilboum RM, Coughtrie MW (2004) A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics 14:199–211

    Article  CAS  PubMed  Google Scholar 

  • Blei T, Soukup ST, Schmalbach K, Pudenz M, Möller FJ, Egert B, Wörtz N, Kurrat A, Müller D, Vollmer G, Gerhäuser C, Lehmann L, Kulling SE, Diel P (2015) Dose-dependent effects of isoflavone exposure during early lifetime on the rat mammary gland: studies on estrogen sensitivity, isoflavone metabolism, and DNA methylation. Mol Nutr Food Res 59:270–283

    Article  CAS  PubMed  Google Scholar 

  • Buckley DB, Klaassen CD (2009) Mechanism of gender-divergent UDP-glucuronosyltransferase mRNA expression in mouse liver and kidney. Drug Metab Dispos 37:834–840. doi:10.1124/dmd.108.024224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buist SC, Klaassen CD (2004) Rat and mouse differences in gender-predominant expression of organic anion transporter (Oat1–3; Slc22a6–8) mRNA levels. Drug Metab Dispos 32:620–625

    Article  CAS  PubMed  Google Scholar 

  • Buist SCN, Cherrington NJ, Choudhuri S, Hartley DP, Klaassen CD (2002) Gender-specific and developmental influences on the expression of rat organic anion transporters. J Pharmacol Exp Ther 301:145–151

    Article  CAS  PubMed  Google Scholar 

  • Cederroth CR, Auger J, Zimmermann C, Eustache F, Nef S (2010) Soy, phyto-oestrogens and male reproductive function: a review. Int J Androl 33:304–316. doi:10.1111/j.1365-2605.2009.01011.x

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Huang C, Zhou T, Zhang S, Chen G (2010) Biochanin A induction of sulfotransferases in rats. J Biochem Mol Toxicol 24:102–114. doi:10.1002/jbt.20318

    Article  PubMed  Google Scholar 

  • Choudhuri S, Cherrington NJ, Li N, Klaassen CD (2003) Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab Dispos 31:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Dunn RT, Klaassen CD (1998) Tissue-specific expression of rat sulfotransferase messenger RNAs. Drug Metab Dispos 26:598–604

    CAS  PubMed  Google Scholar 

  • Enokizono J, Kusuhara H, Sugiyama Y (2007) Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol 72:967–975

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W, Hass BS, Xie Q, Dial SL, Moland CL, Sheehan DM (2001) Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol 14:280–294

    Article  CAS  PubMed  Google Scholar 

  • Filipović B, Šošić-Jurjević B, Ajdžanović V, Brkić D, Manojlović-Stojanoski M, Milošević V, Sekulić M (2010) Daidzein administration positively affects thyroid C cells and bone structure in orchidectomized middle-aged rats. Osteoporos Int 21:1609–1616. doi:10.1007/s00198-009-1092-x

    Article  PubMed  Google Scholar 

  • Gotoh Y, Kato Y, Stieger B, Meier PJ, Sugiyama Y (2002) Gender difference in the Oatp1-mediated tubular reabsorption of estradiol 17β-d-glucuronide in rats. Am J Physiol Endocrinol Metab 282:E1245–E1254

    Article  CAS  PubMed  Google Scholar 

  • Grosser G, Döring B, Ugele B, Geyer J, Kulling SE, Soukup ST (2015) Transport of the soy isoflavone daidzein and its conjugative metabolites by the carriers SOAT, NTCP, OAT4, and OATP2B1. Arch Toxicol 89:2253–2263. doi:10.1007/s00204-014-1379-3

    Article  CAS  PubMed  Google Scholar 

  • Islam MA, Bekele R, vanden Berg JHJ, Kuswanti Y, Thapa O, Soltani S, van Leeuwen FXR, Rietjens IMCM, Murk AJ (2015) Deconjugation of soy isoflavone glucuronides needed for estrogenic activity. Toxicol In Vitro. doi:10.1016/j.tiv.2015.01.013

    PubMed  Google Scholar 

  • Juma SS, Ezzat-Zadeh Z, Khalil DA, Hooshmand S, Akhter M, Arjmandi B (2012) Soy protein with or without isoflavones failed to preserve bone density in gonadal hormone–deficient male rat model of osteoporosis. Nutr Res 32:694–700. doi:10.1016/j.nutres.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Kusuhara H, Kumagai Y, Ieiri I, Mori H, Ito S, Nakai Y, Maeda K, Sugiyama Y (2012) Association of multidrug resistance-associated protein 2 single nucleotide polymorphism rs12762549 with the basal plasma levels of phase II metabolites of isoflavonoids in healthy Japanese individuals. Pharmacogenet Genomics 22:344–354

    CAS  PubMed  Google Scholar 

  • Keinan-Boker L, Peeters P, Mulligan A, Navarro C, Slimani N, Mattisson I, Lundin E, McTaggart A, Allen NE, Overvad K, Tjønneland A, Clavel-Chapelon F, Linseisen J, Haftenberger M, Lagiou P, Kalapothaki V, Evangelista A, Frasca G, Bueno-de-Mesquita HB, van der Schouw YT, Engeset D, Skeie G, Tormo MJ, Ardanaz E, Charrondière UR, Riboli E (2002) Soy product consumption in 10 European countries: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 5:1217. doi:10.1079/PHN2002400

    Article  CAS  PubMed  Google Scholar 

  • Khalil DA, Lucas EA, Smith BJ, Soung DY, Devareddy L, Juma S, Akhter MP, Recker R, Arjmandi BH (2005) Soy isoflavones may protect against orchidectomy-induced bone loss in aged male rats. Calcif Tissue Int 76:56–62. doi:10.1007/s00223-004-0018-z

    Article  CAS  PubMed  Google Scholar 

  • Kinjo J, Tsuchihashi R, Morito K, Hirose T, Aomori T, Nagao T, Okabe H, Nohara T, Masamune Y (2004) Interactions of phytoestrogens with estrogen receptors a and b (III). Estrogenic activities of soy isoflavone aglycones and their metabolites isolated from human urine. Biol Pharm Bull 27:185–188

    Article  CAS  PubMed  Google Scholar 

  • Kishida T, Mizushige T, Nagamoto M, Ohtsu Y, Izumi T, Obata A, Ebihara K (2006) Lowering effect of an isoflavone-rich fermented soybean extract on the serum cholesterol concentrations in female rats, with or without ovariectomy, but not in male rats. Biosci Biotechnol Biochem 70:1547–1556. doi:10.1271/bbb.50008

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Degawa M (2014) Sex differences in the constitutive gene expression of sulfotransferases and UDP-glucuronosyltransferases in the pig liver: androgen-mediated regulation. Drug Metab Pharmacokinet 29:192–197. doi:10.2133/dmpk.DMPK-13-RG-086

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Klaassen CD (1996) Ontogeny and hormonal basis of male-dominant rat hepatic sulfotransferases. Mol Pharmacol 50:565–572

    CAS  PubMed  Google Scholar 

  • Lu R, Kanai N, Bao Y, Wolkoff AW, Schuster VL (1996) Regulation of renal oatp mRNA expression by testosterone. Am J Physiol-Renal Physiol 270:F332–F337

    CAS  Google Scholar 

  • Lund TD, Munson DJ, Haldy ME, Setchell KDR, Lephart ED, Handa RJ (2004) Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol Reprod 70:1188–1195. doi:10.1095/biolreprod.103.023713

    Article  CAS  PubMed  Google Scholar 

  • Messina M, Nagata C, Wu AH (2006) Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer 55:1–12. doi:10.1207/s15327914nc5501_1

    Article  CAS  PubMed  Google Scholar 

  • Molzberger AF, Soukup ST, Kulling SE, Diel P (2013) Proliferative and estrogenic sensitivity of the mammary gland are modulated by isoflavones during distinct periods of adolescence. Arch Toxicol 87:1129–1140

    Article  CAS  PubMed  Google Scholar 

  • Mortensen A, Kulling SE, Schwartz H, Rowland I, Ruefer CE, Rimbach G, Cassidy A, Magee P, Millar J, Hall WL, Birkved FK, Sorensen IK, Sontag G (2009) Analytical and compositional aspects of isoflavones in food and their biological effects. Mol Nutr Food Res 53:S266–S309

    Article  PubMed  Google Scholar 

  • Müller DR, Basso F, Kurrat A, Soukup ST, Niehoff A, Kulling SE, Diel P (2016) Dose-dependent effects of isoflavone exposure during early lifetime on development and androgen sensitivity in male Wistar rats. Mol Nutr Food Res 60:325–336. doi:10.1002/mnfr.201500559

    Article  PubMed  Google Scholar 

  • Nakano H, Ogura K, Takahashi E, Harada T, Nishiyama T, Muro K, Hiratsuka A, Kadota S, Watabe T (2004) Regioselective monosulfation and disulfation of the Phytoestrogens daidzein and genistein by human liver sulfotransferases. Drug Metab Pharmacokinet 19:216–226

    Article  CAS  PubMed  Google Scholar 

  • Orgaard A, Jensen L (2008) The effects of soy isoflavones on obesity. Exp Biol Med 233:1066–1080. doi:10.3181/0712-MR-347

    Article  Google Scholar 

  • Owens W, Gray LE, Zeiger E, Walker M, Yamasaki K, Ashby J, Jacob E (2007) The OECD program to validate the rat hershberger bioassay to screen compounds for in vivo androgen and antiandrogen responses: phase 2 dose-response studies. Environ Health Perspect 115:671–678. doi:10.1289/ehp.9666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai TG, Suiko M, Sakakibara Y, Liu M-C (2001) Sulfation of flavonoids and other phenolic dietary compounds by the human cytosolic sulfotransferases. Biochem Biophys Res Commun 285:1175–1179

    Article  CAS  PubMed  Google Scholar 

  • Perabo FGE, Von Löw EC, Ellinger J, von Rücker A, Müller SC, Bastian PJ (2008) Soy isoflavone genistein in prevention and treatment of prostate cancer. Prostate Cancer Prostatic Dis 11:6–12

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugazhendhi D, Watson KA, Mills S, Botting N, Pope GS, Darbre PD (2008) Effect of sulphation on the oestrogen agonist activity of the phytoestrogens genistein and daidzein in MCF-7 human breast cancer cells. J Endocrinol 197:503–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sfakianos J, Coward L, Kirk M, Barnes S (1997) Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr 127:1260–1268

    CAS  PubMed  Google Scholar 

  • Shelby MK, Cherrington NJ, Vansell NR, Klaassen CD (2003) Tissue mRNA expression of the rat UDP-glucuronosyltransferase gene family. Drug Metab Dispos 31:326–333

    Article  CAS  PubMed  Google Scholar 

  • Soukup ST, Al-Maharik N, Botting N, Kulling SE (2014) Quantification of soy isoflavones and their conjugative metabolites in plasma and urine: an automated and validated UHPLC-MS/MS method for use in large-scale studies. Anal Bioanal Chem 406:6007–6020. doi:10.1007/s00216-014-8034-y

    Article  CAS  PubMed  Google Scholar 

  • Soukup ST, Helppi J, Müller DR, Zierau O, Watzl B, Vollmer G, Diel P, Bub A, Kulling SE (2016) Phase II metabolism of the soy isoflavones genistein and daidzein in humans, rats and mice: a cross-species and sex comparison. Arch Toxicol 90:1335–1347. doi:10.1007/s00204-016-1663-5

    Article  CAS  PubMed  Google Scholar 

  • The International Transporter Consortium (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  PubMed Central  Google Scholar 

  • Urakami Y, Nakamura N, Takahashi K, Okuda M, Saito H, Hashimoto Y, Inui K (1999) Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett 461:339–342

    Article  CAS  PubMed  Google Scholar 

  • Van Die MD, Bone KM, Williams SG, Pirotta MV (2014) Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials: soy and soy isoflavones in prostate cancer. BJU Int 113:E119–E130. doi:10.1111/bju.12435

    Article  PubMed  Google Scholar 

  • Wang SWJ, Kulkarni KH, Tang L, Wang JR, Yin T, Daidoji T, Yokota H, Hu M (2009) Disposition of flavonoids via enteric recycling: UDP-glucuronosyltransferase (UGT) 1As deficiency in gunn rats is compensated by increases in UGT2Bs activities. J Pharmacol Exp Ther 329:1023–1031. doi:10.1124/jpet.108.147371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xu J, Wang B, Shu FR, Chen K, Mi MT (2014) Equol promotes rat osteoblast proliferation and differentiation through activating estrogen receptor. Genet Mol Res 13:5055–5063. doi:10.4238/2014.July.4.21

    Article  CAS  PubMed  Google Scholar 

  • Weigt C, Hertrampf T, Zoth N, Fritzemeier KH, Diel P (2012) Impact of estradiol, ER subtype specific agonists and genistein on energy homeostasis in a rat model of nutrition induced obesity. Mol Cell Endocrinol 351:227–238. doi:10.1016/j.mce.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  • Wong CC, Botting NP, Orfila C, Al-Maharik N, Williamson G (2011) Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochem Pharmacol 81:942–949

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Song TT, Cunnick JE, Murphy PA, Hendrich S (1999) Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J Nutr 129:399–405

    CAS  PubMed  Google Scholar 

  • Zhu W, Xu H, Wang SJ, Hu M (2010) Breast cancer resistance protein (BCRP) and sulfotransferases contribute significantly to the disposition of genistein in mouse intestine. AAPS J 12:525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Alexander Roth for his support with the statistical analysis of the data and Ute Laudenbach-Leschowsky for her support during the conduction of the animal experiment. Parts of the work were funded by the German Research Foundation (DFG), Grant KU-1079/9-1 and DI-716/12-2. This DFG project is part of the collaborative research project entitled IsoCross “Isoflavones: Cross-species comparison of metabolism, estrogen sensitivity, epigenetics and carcinogenesis”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine E. Kulling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Sebastian T. Soukup and Dennis R. Müller have contributed equally to this work.

Parts of the work (body and prostate weights as well as food intake and ISO overall plasma levels, presented in this manuscript in Supplementary Fig. 1 and Table 2) were previously presented in the manuscript investigating the influence of ISO on development and androgen sensitivity in male rats (Müller et al. 2016).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soukup, S.T., Müller, D.R., Kurrat, A. et al. Influence of testosterone on phase II metabolism and availability of soy isoflavones in male Wistar rats. Arch Toxicol 91, 1649–1661 (2017). https://doi.org/10.1007/s00204-016-1853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1853-1

Keywords

Navigation