Skip to main content

Advertisement

Log in

Polymyxin B causes DNA damage in HK-2 cells and mice

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

A Correction to this article was published on 18 June 2018

This article has been updated

Abstract

Increasing incidence of multidrug-resistant bacteria presents an imminent risk to global health. Polymyxins are ‘last-resort’ antibiotics against Gram-negative ‘superbugs’; however, nephrotoxicity remains a key impediment in their clinical use. Molecular mechanisms underlying this nephrotoxicity remain poorly defined. Here, we examined the pathways which led to polymyxin B induced cell death in vitro and in vivo. Human proximal tubular cells were treated with polymyxin B (12.5–100 μM) for up to 24 h and showed a significant increase in micronuclei frequency, as well as abnormal mitotic events (over 40% in treated cells, p < 0.05). Time-course studies were performed using a mouse nephrotoxicity model (cumulative 72 mg/kg). Kidneys were collected over 48 h and investigated for histopathology and DNA damage. Notable increases in γH2AX foci (indicative of double-stranded breaks) were observed in both cell culture (up to ~ 44% cells with 5+ foci at 24 h, p < 0.05) and mice treated with polymyxin B (up to ~ 25%, p < 0.05). Consistent with these results, in vitro assays showed high binding affinity of polymyxin B to DNA. Together, our results indicate that polymyxin B nephrotoxicity is associated with DNA damage, leading to chromosome missegregation and genome instability. This novel mechanistic information may lead to new strategies to overcome the nephrotoxicity of this important last-line class of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 18 June 2018

    In the original publication of the article, part of Fig. 6 is missing. The missing subpanels, Fig. 6c, d are given below.

References

  • Azad MA et al (2013) Polymyxin B induces apoptosis in kidney proximal tubular cells. Antimicrob Agents Chemother 57:4329–4335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azad MA, Atker J, Rogers KL, Nation RL, Velkov T, Li J (2015) Major pathways of polymyxin-induced apoptosis in rat kidney proximal tubular cells. Antimicrob Agents Chemother 59:2136–2143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boucher HW et al (2009) Bad bugs, no drug: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12

    Article  PubMed  Google Scholar 

  • Boucher HW et al (2013) 10 × ‘20 Progress–development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56:1685–1694

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai C, Li J, Tang S, Li J, Xiao X (2014a) Colistin-induced nephroxicity in mice involves the mitochondria, death receptor, and endoplasmic reticulum pathways. Antimicrob Agents Chemother 58:4075–4085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai C et al (2014b) Lycopene attenuates colistin-induced nephrotoxicity in mice via activating the Nrf2/HO-1 pathway. Antimicrob Agents Chemother 59:579–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunstan HM et al (2002) Cell-based assays for identification of novel double-strand break-inducing agents. J Natl Cancer Inst 94:88–94

    Article  PubMed  CAS  Google Scholar 

  • Falagas ME, Bliziotis IA (2007) Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents 29:630–636

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (2002) Chromosomal biomarkers of genomic instability relevant to cancer. Drug Discov Today 7:1128–1137

    Article  PubMed  CAS  Google Scholar 

  • Fenech M et al (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132

    Article  PubMed  CAS  Google Scholar 

  • Harashima H, Dissmeyer N, Schnittger A (2013) Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23:345–356

    Article  PubMed  CAS  Google Scholar 

  • Hudson DF, Amor DJ, Boys A, Butler K, Williams L, Zhang T, Kalitsis P (2016) Loss of RM12 increases genome instability and causes a bloom-like syndrome. PLoS Genet 12:e1006483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jabes D (2011) The antibiotic R&D pipeline: an update. Curr Opin Microbiol 14:564–569

    Article  PubMed  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 435:316–323

    Article  CAS  Google Scholar 

  • Katz R (1963) Renal and possibly hepatic toxicity from coly-mycin. Report of a case. Med Ann Dist Columbia 32:408–413

    PubMed  CAS  Google Scholar 

  • Keirstead ND et al (2014) Early prediction of polymyxin-induced nephrotoxicity with next generation urinary kidney injury biomarkers. Toxicol Sci 137:278–291

    Article  PubMed  CAS  Google Scholar 

  • Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE (1970) Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med 72:857–868

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Liu Z, Hu X, Liu S (2011) Interaction of polymyxin with ds-DNA, and determination of DNA or polymyxin B via resonance Rayleigh scattering and resonance non-linear scattering spectra. Microchim Acta 173:207–213

    Article  CAS  Google Scholar 

  • Kubin CJ, Ellman TM, Phadke V, Haynes LJ, Calfee DP, Yin MT (2012) Incidence and predictors of acute kidney injury associated with intravenous polymyxin B therapy. J Infect 65:80–87

    Article  PubMed  Google Scholar 

  • Kuo LJ, Yang L (2008) γ-H2AX—A novel biomarker for DNA double-strand breaks. In vivo 22:305–309

    PubMed  CAS  Google Scholar 

  • Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21:449–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K (2003) Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob Agents Chemother 47:1766–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayne CR, Paterson DL (2006) Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6:589–601

    Article  PubMed  CAS  Google Scholar 

  • Lim LM et al (2010) Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy 30:1279–1291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev 14:1448–1459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Nielsen CF, Yao Q, Hickson ID (2014) The origins and processing of ultra fine anaphase DNA bridges. Curr Opin Genet Dev 26:1–5

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM (2004) The need for new antibiotics. Clin Microbiol Infect 10:1–9

    Article  PubMed  Google Scholar 

  • Lopez-Novoa JM, Quiros Y, Vincente L, Morales AI, Lopez-Hernandez FJ (2011) New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 1:33–45

    Article  CAS  Google Scholar 

  • Lu X et al (2016) Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins. J Antimicrob Chemother 71:403–412

    Article  PubMed  CAS  Google Scholar 

  • Ma Z et al (2009) Renal disposition of colistin in the isolated perfused rat kidney. Antimicrob Agents Chemother 53:2857–2864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mankouri HW, Huttner D, Hickson ID (2013) How unfinished business from S-phase affects mitosis and beyond. EMBO J 32:2661–2671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mingeot-Leclercq MP, Tulkens PM, Denamur S, Vaara T, Vaara M (2012) Novel polymyxin derivatives are less cytotoxic than polymyxin B to renal proximal tubular cells. Peptides 35:248–252

    Article  PubMed  CAS  Google Scholar 

  • Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Nathan C, Cars O (2014) Antibiotic resistance—problems, progress and prospects. N Engl J Med 371:1761–1763

    Article  PubMed  Google Scholar 

  • Nation RL et al (2017) Dosing guidance for intravenous colistin in critically ill patients. Clin Infect Dis 64:565–571

    PubMed  Google Scholar 

  • Nielsen CF, Hickson ID (2016) PICH promotes mitotic chromosome segregation: identification of a novel role in rDNA disjunction. Cell Cycle 15:2704–2711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Payne M, Hickson ID (2009) Genomic instability and cancer: lessons from analysis of Bloom’s syndrome. Biochem Soc Trans 37:553–559

    Article  PubMed  CAS  Google Scholar 

  • Pogue JM et al (2011) Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis 53:879–884

    Article  PubMed  CAS  Google Scholar 

  • Price DJE, Graham DI (1970) Effects of large doses of colistin sulphomethate sodium on renal function. Br Med J 28:525–527

    Article  Google Scholar 

  • Roberts KD et al (2015) Antimicrobial activity and toxicity of the major lipopeptide components of polymyxin B and colistin: last-line anibotics against multidrug-resistant gram-negative bacteria. ACS Infect Dis 1:568–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandri AM et al (2013) Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis 57:524–531

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi H, Okamoto H, Yoshimura A, Yoshida H (2006) ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci 1:3958–3966

    Article  CAS  Google Scholar 

  • Suzuki T et al (2013) Megalin contributes to kidney accumulation and nephrotoxicity of colistin. Antimicrob Agents Chemother 57:6319–6324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tacconelli E, Magrini N (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery and development of new antibiotics. World Health Organization, Geneva

    Google Scholar 

  • Tallgren LG, Liewendahl K, Kuhlback B (1965) The therapeutic success and nephrotoxicity of colistin in acute and chronic nephropathies with impaired renal function. Acta Med Scand 177:717–728

    Article  PubMed  CAS  Google Scholar 

  • van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    Article  PubMed  Google Scholar 

  • Vaz B, Halder S, Ramadan K (2013) Role of p97/VCP (Cdc48) in genome stability. Front Genet. https://doi.org/10.3389/fgene.2013.00060

    Article  PubMed  PubMed Central  Google Scholar 

  • Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8:711–724. https://doi.org/10.2217/fmb.13.39

    Article  PubMed  CAS  Google Scholar 

  • Velkov T, Roberts KD, Nation RL, Wang J, Thompson PE, Li J (2014) Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting Gram-negative ‘superbugs’. ACS Chem Biol 16:1172–1117

    Article  CAS  Google Scholar 

  • Velkov T et al (2016) A novel chemical biology approach for mapping of polymyxin lipopeptide antibody binding epitopes. ACS Infect Dis 2:341–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Liu S, Liang W, Li D, Yang J, He Y (2015) Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate. J Colloid Interface Sci 448:257–264

    Article  PubMed  CAS  Google Scholar 

  • Yousef JM, Chen G, Hill PA, Nation RL, Li J (2011) Melatonin attenuates colistin-induced nephrotoxicity in rats. Antimicrob Agents Chemother 55:4044–4049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yun B et al (2015) Cellular uptake and localization of polymyxins in renal tubular cells using rationally designed fluorescent probes. Antimicrob Agents Chemother 59:7489–7496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zavascki AP et al (2008) Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin Infect Dis 47:1298–1304

    Article  PubMed  CAS  Google Scholar 

  • Zhang L et al (2015) Autophagy regulates colistin-induced apoptosis in PC-12 cells. Antimicrob Agents Chemother 59:2189–2197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L et al (2016a) p53 mediates colistin-induced autophagy and apoptosis in PC-12 cells. Antimicrob Agents Chemother 60:5294–5301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T, Paulson JR, Bakhrebah M, Kim JH, Nowell CJ, Kalitsis P, Hudson DF (2016b) Condensin I and II behaviour in interphase nuclei and cells undergoing premature chromosome condensation. Chromosome Res 24:243–269

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Si-Hoe SL, Hudson DF, Surana U (2016c) Condensin recruitment to chromatin is inhibited by Chk2 kinase in response to DNA damage. Cell Cycle 15:3454–3470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

J.L. and T.V. are supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (R01 AI111965). Part of this work was supported by National Health and Medical Research Council (Australia) project Grant GNT1127209 (D.H.) and by the Victorian Government’s Operational Infrastructure Support Program. J.L. is an NHMRC Senior Research Fellow and T.V. is an NHMRC Career Development Industrial Fellow. This study utilised Australian Phenomics Network Histopathology and Organ Pathology Service, University of Melbourne for analysis of mouse kidneys.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. F. Hudson or J. Li.

Ethics declarations

Conflict of interest

All authors declare no competing interests. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, B., Zhang, T., Azad, M.A.K. et al. Polymyxin B causes DNA damage in HK-2 cells and mice. Arch Toxicol 92, 2259–2271 (2018). https://doi.org/10.1007/s00204-018-2192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2192-1

Keywords

Navigation