Skip to main content
Log in

Model-Free and Prior-Free Data-Driven Inference in Mechanics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We present a model-free data-driven inference method that enables inferences on system outcomes to be derived directly from empirical data without the need for intervening modeling of any type, be it modeling of a material law or modeling of a prior distribution of material states. We specifically consider physical systems with states characterized by points in a phase space determined by the governing field equations. We assume that the system is characterized by two likelihood measures: one \(\mu _D\) measuring the likelihood of observing a material state in phase space; and another \(\mu _E\) measuring the likelihood of states satisfying the field equations, possibly under random actuation. We introduce a notion of intersection between measures which can be interpreted to quantify the likelihood of system outcomes. We provide conditions under which the intersection can be characterized as the athermal limit \(\mu _\infty \) of entropic regularizations \(\mu _\beta \), or thermalizations, of the product measure \(\mu = \mu _D\times \mu _E\) as \(\beta \rightarrow +\infty \). We also supply conditions under which \(\mu _\infty \) can be obtained as the athermal limit of carefully thermalized \((\mu _{h,\beta _h})\) sequences of empirical data sets \((\mu _h)\) approximating weakly an unknown likelihood function \(\mu \). In particular, we find that the cooling sequence \(\beta _h \rightarrow +\infty \) must be slow enough, corresponding to annealing, in order for the proper limit \(\mu _\infty \) to be delivered. Finally, we derive explicit analytic expressions for expectations \(\mathbb {E}[f]\) of outcomes f that are explicit in the data, thus demonstrating the feasibility of the model-free data-driven paradigm as regards making convergent inferences directly from the data without recourse to intermediate modeling steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Truesdell, C., Toupin, R.A.: The classical field theories. vol. 2/3/1 (Eds. der Physik, H. and Flügge, S.) Springer, Berlin, 226–793, 1960

  2. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics. Springer, Berlin (1965)

    MATH  Google Scholar 

  3. Meyers, M.A.: Dynamic Behavior of Materials. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  4. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton (2010)

    Google Scholar 

  5. Dashti, M., Stuart, A.M.: The Bayesian Approach to Inverse Problems, pp. 311–428. Springer, Cham (2017)

    Google Scholar 

  6. Bock, F.E., Aydin, R.C., Cyron, C.J., Huber, N., Kalidindi, S.R., Klusemann, B.: A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front. Mater. 6, 110, 2019

    Article  ADS  Google Scholar 

  7. Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Arch. Ration. Mech. Anal. 229(1), 79–123, 2018

    Article  MathSciNet  MATH  Google Scholar 

  8. Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Conti, S., Müller, S., Ortiz, M.: Data-driven finite elasticity. Arch. Ration. Mech. Anal. 237(1), 1–33, 2020

    Article  MathSciNet  MATH  Google Scholar 

  10. Röger, M., Schweizer, B.: Relaxation analysis in a data driven problem with a single outlier. Calc. Var. Partial. Differ. Equ. 59(4), 119, 2020

    Article  MathSciNet  MATH  Google Scholar 

  11. Nguyen, L.T.K., Keip, M.A.: A data-driven approach to nonlinear elasticity. Comput. Struct. 194, 97–115, 2018

    Article  Google Scholar 

  12. Ayensa-Jiménez, J., Doweidar, M.H., Sanz-Herrera, J.A., Doblaré, M.: A new reliability-based data-driven approach for noisy experimental data with physical constraints. Comput. Methods Appl. Mech. Eng. 328, 752–774, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Leygue, A., Coret, M., Réthoré, J., Stainier, L., Verron, E.: Data-based derivation of material response. Comput. Methods Appl. Mech. Eng. 331, 184–196, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kanno, Y.: Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach. Jpn. J. Ind. Appl. Math. 35(3), 1085–1101, 2018

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhou, Y., Zhan, H., Zhang, W., Zhu, J., Bai, J., Wang, Q., Gu, Y.: A new data-driven topology optimization framework for structural optimization. Comput. Struct. 239, 106310, 2020

    Article  Google Scholar 

  16. Gebhardt, C.G., Steinbach, M.C., Schillinger, D., Rolfes, R.: A framework for data-driven structural analysis in general elasticity based on nonlinear optimization: the dynamic case. Int. J. Numer. Methods Eng. 121(24), 5447–5468, 2020

    Article  MathSciNet  MATH  Google Scholar 

  17. Gebhardt, C.G., Schillinger, D., Steinbach, M.C., Rolfes, R.: A framework for data-driven structural analysis in general elasticity based on nonlinear optimization: the static case. Comput. Methods Appl. Mech. Eng. 365, 112993, 2020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften vol. 153. Springer, New York, 1969

  19. Mattila, P.: Hausdorff dimension and capacities of intersections of sets inn-space. Acta Math. 152(1), 77–105, 1984

    Article  MathSciNet  MATH  Google Scholar 

  20. Prume, E., Reese, S., Ortiz, M.: Model-free data-driven inference in computational mechanics. 2022. https://doi.org/10.48550/ARXIV.2207.06419

  21. Eggersmann, R., Stainier, L., Ortiz, M., Reese, S.: Efficient data structures for model-free data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 382, 113855, 2021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-nearest neighbors. IEEE Trans. Comput. 100(7), 750–753, 1975

    Article  MATH  Google Scholar 

  23. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240, 2014

    Article  Google Scholar 

  24. Kanno, Y.: Mixed-integer programming formulation of a data-driven solver in computational elasticity. Optim. Lett. 13(7), 1505–1514, 2019

    Article  MathSciNet  MATH  Google Scholar 

  25. Iba, Y.: Population Monte Carlo algorithms. Trans. Jpn. Soc. Artif. Intell. 16(2), 279–286, 2001

    Article  Google Scholar 

  26. Machta, J.: Population annealing with weighted averages: a Monte Carlo method for rough free-energy landscapes. Phys. Rev. E 82(2), 026704, 2010

    Article  ADS  Google Scholar 

  27. Weigel, M., Barash, L., Shchur, L., Janke, W.: Understanding population annealing Monte Carlo simulations. Phys. Rev. E 103(5), 053301, 2021

    Article  ADS  MathSciNet  Google Scholar 

  28. Kirchdoerfer, T., Ortiz, M.: Data driven computing with noisy material data sets. Comput. Methods Appl. Mech. Eng. 326, 622–641, 2017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. Commun. Pure Appl. Math. 28, 1–47, 1975

    Article  MathSciNet  MATH  Google Scholar 

  30. Léonard, C.: Some properties of path measures. Séminaire de Probabilités XLVI. Springer, Cham, 207–230, 2014

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Project 211504053 - SFB 1060; Project 441211072 - SPP 2256; and Project 390685813 - GZ 2047/1 - HCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ortiz.

Additional information

Communicated by F. Otto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, S., Hoffmann, F. & Ortiz, M. Model-Free and Prior-Free Data-Driven Inference in Mechanics. Arch Rational Mech Anal 247, 7 (2023). https://doi.org/10.1007/s00205-022-01836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-022-01836-7

Navigation