Skip to main content
Log in

Complex valued semi-linear heat equations in super-critical spaces \(E^s_\sigma \)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for the complex valued semi-linear heat equation

$$\begin{aligned} \partial _t u - \Delta u - u^m =0, \ \ u (0,x) = u_0(x), \end{aligned}$$

where \(m\ge 2\) is an integer and the initial data belong to super-critical spaces \(E^s_\sigma \) for which the norms are defined by

$$\begin{aligned} \Vert f\Vert _{E^s_\sigma } = \Vert \langle \xi \rangle ^\sigma 2^{s|\xi |}\widehat{f}(\xi )\Vert _{L^2}, \ \ \sigma \in \mathbb {R}, \ s<0. \end{aligned}$$

If \(s<0\), then any Sobolev space \(H^{r}\) is a subspace of \(E^s_\sigma \), i.e., \(\cup _{r \in \mathbb {R}} H^r \subset E^s_\sigma \). We obtain the global existence and uniqueness of the solutions if the initial data belong to \(E^s_\sigma \) (\(s<0, \ \sigma \ge d/2-2/(m-1)\)) and their Fourier transforms are supported in the first octant, the smallness conditions on the initial data in \(E^s_\sigma \) are not required for the global solutions. Moreover, we show that the error between the solution u and the iteration solution \(u^{(j)}\) is \(C^j/(j\,!)^2\). Similar results also hold if the nonlinearity \(u^m\) is replaced by an exponential function \(e^u-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\chi _E\) denote the characteristic function on E.

  2. Such a kind of initial data have a direct relation with (6) and they are complex-valued.

References

  1. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)

    MATH  Google Scholar 

  2. Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6, 351–407 (1966)

    MathSciNet  MATH  Google Scholar 

  3. Banquet, C., Villamizar-Roa, E.J.: Time-decay and Strichartz estimates for the BBM equation on modulation spaces: existence of local and global solutions. J. Math. Anal. Appl. 498(124934), 23 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Cazenave, T., Dickstein, F., Naumkin, F., Weissler, F.B.: Sign-changing self-similar solutions of the nonlinear heat equation with positive initial value. Am. J. Math. 142, 1439–1495 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Cazenave, T., Dickstein, F., Weissler, F.B.: Global existence and blowup for sign-changing solutions of the nonlinear heat equation. J. Differ. Equ. 246, 2669–2680 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N.: Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. J. Evol. Equ. 19, 803–843 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Chouichi, A., Otsmane, S., Tayachi, S.: Large time behavior of solutions for a complex-valued quadratic heat equation. Nonlinear Differ. Equ. Appl. 22, 1005–1045 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Chouichi, A., Majdoub, M., Tayachi, S.: Global existence and asymptotic behavior of solutions for the complex-valued nonlinear heat equation. Ann. Polon. Math. 121, 99–131 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three- vorticity equation. Commun. Pure Appl. Math. 38, 715–724 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Córdoba, A., Fefferman, C.: Wave packets and Fourier integral operators. Commun. Partial Differ. Equ. 3, 979–1005 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Duong, G.: Profile for the imaginary part of a blowup solution for a complex-valued semilinear heat equation. J. Funct. Anal. 27(5), 1531–1579 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Duong, G.: A blowup solution of a complex semi-linear heat equation with an irrational power. J. Differ. Equ. 267, 4975–5048 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Guo, J.S., Ninomiya, H., Shimojo, M., Yanagida, E.: Convergence and blow-up of solutions for a complex-valued heat equation with a quadratic nonlinearity. Trans. Am. Math. Soc. 365(5), 2447–2467 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Feichtinger, H., Gröchenig, K., Li, K.J., Wang, B.X.: Navier–Stokes equation in super-critical spaces \(E_{p, q}^s\). Ann. Inst. H. Poincaré Anal. Non Linéaire 38(1), 139–173 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_t=\Delta +u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. I(13), 109–124 (1966)

    Google Scholar 

  16. Fujishima, Y.: Global existence and blow-up of solutions for the heat equation with exponential nonlinearity. J. Differ. Equ. 264, 6809–6842 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Galaktionov, V.A., Vazquez, J.L.: Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Commun. Pure Appl. Math. 1, 1–67 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Gelfand, I.M., Shilov, G.E.: Generalized Functions, Spaces of Fundamental and Generalized Functions, vol. 2. Academic Press, New York (1968)

    Google Scholar 

  19. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62, 186–212 (1986)

    MATH  Google Scholar 

  20. Giga, Y., Umeda, N.: On blow-up at space infinity for semilinear heat equations. J. Math. Anal. Appl. 316(2), 538–555 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  22. Hayakawa, K.: On nonexistence of global solutions of some semilinear parabolic differential equations. Proc. Jpn. Acad. 49, 503–505 (1973)

    MathSciNet  MATH  Google Scholar 

  23. Harada, J.: Blowup profile for a complex valued semilinear heat equation. J. Funct. Anal. 270, 4213–4255 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Harada, J.: Nonsimultaneous blowup for a complex valued semilinear heat equation. J. Differ. Equ. 263, 4503–4516 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Iwabuchi, T.: Navier–Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices. J. Differ. Equ. 248, 1972–2002 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Iwabuchi, T., Nakamura, M.: Small solutions for nonlinear heat equations, the Navier–Stokes equation and the Keller–Segel system in Besov and Triebel–Lizorkin spaces. Adv. Differ. Equ. 18, 687–736 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Kato, T.: Well-posedness for the generalized Zakharov–Kuznetsov equation on modulation spaces. J. Fourier Anal. Appl. 23, 612–655 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Kato, T.: The Cauchy problem for the generalized Zakharov–Kuznetsov equation on modulation spaces. J. Differ. Equ. 264, 3402–3444 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Kozono, H., Okada, A., Shimizu, S.: Characterization of initial data in the homogeneous Besov space for solutions in the Serrin class of the Navier–Stokes equations. J. Funct. Anal. 278, 5 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Kozono, H., Shimizu, S.: Strong solutions of the Navier-Stokes equations based on the maximal Lorentz regularity theorem in Besov spaces. J. Funct. Anal. 276(3), 896–931 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Lacey, A.A., Tzanetis, D.E.: Global, unbounded solutions to a parabolic equation. J. Differ. Equ. 101, 80–102 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Kobayashi, K., Sino, T., Tanaka, H.: On the growing up problem for semilinear heat equations. J. Math. Soc. Jpn. 29, 407–424 (1977)

    MathSciNet  Google Scholar 

  33. Lee, T.Y., Ni, W.M.: Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem. Trans. Am. Math. Soc. 333, 365–378 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Mizoguchi, N., Yanagida, E.: Critical exponents for the blow-up of solutions with sign changes in a semilinear parabolic equation. Math. Ann. 307, 663–675 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Mizoguchi, N., Souplet, P.: Optimal condition for blow-up of the critical Lq norm for the semilinear heat equation. Adv. Math. 355(106763), 24 (2019)

    MATH  Google Scholar 

  36. Molinet, L., Ribaud, F., Youssfi, A.: Ill-posedness issues for a class of parabolic equations. Proc. R. Soc. of Edinburgh 132A, 1407–1416 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Molinet, L., Tayachi, S.: Remarks on the Cauchy problem for the one-dimensional quadratic (fractional) heat equation. J. Funct. Anal. 269, 2305–2327 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Nouaili, N., Zaag, H.: Profile for a simultaneously blowing up solution for a complex valued semilinear heat equation. Commun. Partial Differ. Equ. 40, 1197–1217 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Ogawa, T., Shimizu, S.: End-point maximal regularity and its application to two dimensional Keller–Segel system. Math. Z. 264, 601–628 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Ogawa, T., Shimizu, S.: Maximal regularity for the Cauchy problem of the heat equation in BMO. Math. Nachr. (to appear)

  41. Pasquali, S.: Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit. Ann. Mat. Pura Appl. 198, 903–972 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Pattakos, N.: NLS in the modulation space \(M_{2, q}(\mathbb{R})\). J. Fourier Anal. Appl. 25, 1447–1486 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Quittner, P., Souplet, P.: Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  44. Sakajo, T.: Blow-up solutions of the Constantin-Lax-Majda equation with a generalized viscosity term. J. Math. Sci. Univ. Tokyo 10, 187–207 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Sakajo, T.: On global solutions for the Constantin-Lax-Majda equation with a generalized viscosity term. Nonlinearity 16, 1319–1328 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Schochet, S.: Explicit solutions of the viscous model vorticity equation. Commun. Pure Appl. Math. 39, 531–537 (1986)

    MathSciNet  MATH  Google Scholar 

  47. Seki, Y.: Type II blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent. J. Funct. Anal. 275, 3380–3456 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Seki, Y.: Type II blow-up mechanisms in a semilinear heat equation with Lepin exponent. J. Differ. Equ. 268, 853–900 (2020)

    MathSciNet  MATH  Google Scholar 

  49. Sugimoto, M., Wang, B.X., Zhang, R.R.: Local well-posedness for the Davey–Stewartson equation in a generalized Feichtinger algebra. J. Fourier Anal. Appl. 21, 1105–1129 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Vazquez, J.L.: Domain of existence and blowup for the exponential reaction–diffusion equation. Indiana Univ. Math. J. 48, 677–709 (1999)

    MathSciNet  MATH  Google Scholar 

  51. Wang, B.X., Huang, C.Y.: Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations. J. Differ. Equ. 239, 213–250 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Wang, B.X., Huo, Z.H., Hao, C.C., Guo, Z.H.: Harmonic Analysis Method for Nonlinear Evolution Equations I. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011)

    MATH  Google Scholar 

  53. Wang, B.X., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 232, 36–73 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Wang, B.X., Zhao, L.F., Guo, B.L.: Isometric decomposition operators, function spaces \(E^\lambda _{p, q}\) and applications to nonlinear evolution equations. J. Funct. Anal. 233, 1–39 (2006)

    MathSciNet  Google Scholar 

  55. Weissler, F.B.: Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38, 29–40 (1981)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second named author is very grateful to Professor Y. Giga for his enlightening discussions and for his valuable suggestions on the paper. Also, he would like to thank the reviewers for their valuable suggestions, which enable us to give an essential improvement to Theorem 2.1. The authors are supported in part by the NSFC, Grants 11771024, 12171007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxiang Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, Baoxiang Wang states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, B. & Wang, Z. Complex valued semi-linear heat equations in super-critical spaces \(E^s_\sigma \). Math. Ann. 386, 1351–1389 (2023). https://doi.org/10.1007/s00208-022-02425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02425-5

Mathematics Subject Classification

Navigation