Skip to main content
Log in

Spanning trees, cycle-rooted spanning forests on discretizations of flat surfaces and analytic torsion

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the asymptotic expansion of the determinant of the graph Laplacian associated to discretizations of a tileable surface endowed with a flat unitary vector bundle. By doing so, over the discretizations, we relate the asymptotic expansion of the number of spanning trees and the partition function of cycle-rooted spanning forests weighted by the monodromy of the unitary connection on the vector bundle, to the corresponding zeta-regularized determinants. As a consequence, we establish open problems 2 and 4, formulated by Kenyon in 2000. The spectral theory on discretizations of flat surfaces, Fourier analysis on discrete square and the analytic methods used in the proof of Ray–Singer conjecture lie in the core of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Added in a proof: by a combination of Theorem 1.1 and the main result of the preprint by Izyurov-Khristoforov [37], which was available half a year after the current article, we see that this is indeed correct.

  2. See Bismut-Zhang [7] for the non-unitary version of this theorem.

References

  1. Aldana, C.L., Rowlett, J.: A Polyakov formula for sectors. J. Geom. Anal. 28(2), 1773–1839 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aurell, E., Salomonson, P.: On functional determinants of Laplacians in polygons and simplicial complexes. Comm. Math. Phys. 165(2), 233–259 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basok, M., Chelkak, D.: Tau-functions à la Dubédat and probabilities of cylindrical events for double-dimers and CLE(4) (2018). arXiv:1809.00690

  4. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Grundlehren der Mathematischen Wissenschaften, vol. 298. Springer-Verlag, Berlin (1992)

  5. Bismut, J.-M.: Holomorphic and de Rham torsion. Compos. Math. 140(5), 1302–1356 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bismut, J.-M., Ma, X.: Holomorphic immersions and equivariant torsion forms. J. Reine Angew. Math. 575, 189–235 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller. Astérisque 205, 7–218 (1992)

    MATH  Google Scholar 

  8. Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles I. Bott–Chern forms and analytic torsion. Comm. Math. Phys. 115(1), 49–78 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles II. Direct images and Bott–Chern forms. Comm. Math. Phys. 115(1), 79–126 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles III. Quillen metrics on holomorphic determinants. Comm. Math. Phys. 115(2), 301–351 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brankov, J.G., Priezzhev, V.B.: Critical free energy of a Möbius strip. Nucl. Phys. B 400(1–3), 633–652 (1993)

    Article  MATH  Google Scholar 

  12. Burago, D., Ivanov, S., Kurylev, Y.: A graph discretization of the laplace-beltrami operator. J. Spectral Theory 4 (2013)

  13. Burghelea, D., Friedlander, L., Kappeler, T.: Mayer–Vietoris type formula for determinants of elliptic differential operators. J. Funct. Anal. 107(1), 34–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carslaw, H.S.: The Green’s function for a wedge of any angle, and other problems in the conduction of heat. Proc. Lond. Math. Soc. 2(8), 365–374 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Differ. Geom. 18(4), 575–657 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chinta, G., Jorgenson, J., Karlsson, A.: Zeta functions, heat kernels, and spectral asymptotics on degenerating families of discrete tori. Nagoya Math. J. 198, 121–172 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chinta, G., Jorgenson, J., Karlsson, A.: Complexity and heights of tori. In: Dynamical systems and group actions. Dedicated to Anatoli Stepin on the occasion of his 70th birthday, pages 89–98. Providence, RI: American Mathematical Society (AMS) (2012)

  18. Colin De Verdière, Y.: Spectre de graphes, Cours spécialisés, vol. 4. Soc. Math, France (1998)

  19. Colin De Verdière, Y.: Déterminants et intégrales de Fresnel. Ann. Inst. Fourier 49(3), 861–881 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dodziuk, J.: Finite-difference approach to the Hodge theory of harmonic forms. Am. J. Math. 98, 79–104 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dodziuk, J., Patodi, V.K.: Riemannian structures and triangulations of manifolds. J. Indian Math. Soc. New Ser. 40, 1–52 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Dubédat, J.: Dimers and families of Cauchy–Riemann operators. I. J. Am. Math. Soc. 28(4), 1063–1167 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dubédat, J.: Double dimers, conformal loop ensembles and isomonodromic deformations. J. Eur. Math. Soc. 21(1), 1–54 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dubédat, J., Gheissari, R.: Asymptotics of height change on toroidal Temperleyan dimer models. J. Stat. Phys. 159(1), 75–100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Duplantier, B., David, F.: Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice. J. Stat. Phys. 51(3–4), 327–434 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ferdinand, A.E.: Statistical mechanics of dimers on a quadratic lattice. J. Math. Phys. 8, 2332–2339 (1967)

    Article  Google Scholar 

  27. Finski, S.: Quillen metric for singular families of Riemann surfaces with cusps and compact perturbation theorem pp 40, (2019). arXiv:1911.09087

  28. Finski, S.: Analytic torsion for surfaces with cusps II. Regularity, asymptotics and curvature theorem Adv. Math. 375, 107409 (2020)

  29. Finski, S.: Finite-difference method on flat surfaces with a unitary flat vector bundle, pp 39 (2020). arXiv:2001.04862

  30. Finski, S.: Analytic torsion for surfaces with cusps I. Compact perturbation theorem and anomaly formula. Commun. Math. Phys. 378(12), 1713–1774 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Finski, S.: Determinants of Laplacians on discretizations of flat surfaces and analytic torsion. C. R. Acad. Sci. Paris 358(6), 743–751 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Fisher, M.E.: Statistical mechanics of dimers on a plane lattice. Phys. Rev. II. Ser. 124, 1664–1672 (1961)

    MathSciNet  MATH  Google Scholar 

  33. Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. IHES 103, 1–211 (2006)

    Article  MATH  Google Scholar 

  34. Forman, R.: Determinants of Laplacians on graphs. Topology 32(1), 35–46 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Friedli, F.: The bundle Laplacian on discrete tori. Ann. Inst. Henri. Poincaré D, Comb. Phys. Interact. 6(1), 97–121 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Izmailian, N.S., Oganesyan, K.B., Hu, C.-K.: Exact finite-size corrections of the free energy for the square lattice dimer model under different boundary conditions. Phys. Rev. E 67 (2003)

  37. Izyurov, K., Khristoforov, M.: Asymptotics of the determinant of discrete Laplacians on triangulated and quadrangulated surfaces (2020). arxiv:2007.08941

  38. Kalvin, V.: Polyakov-Alvarez type comparison formulas for determinants of Laplacians on Riemann surfaces with conical metrics (2019). ArXiv: 1910.00104

  39. Kassel, A., Kenyon, R.: Random curves on surfaces induced from the Laplacian determinant. Ann. Probab. 45(2), 932–964 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kasteleyn, P.W.: The statistics of dimers on a lattice. I: the number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  MATH  Google Scholar 

  41. Kenyon, R.: The asymptotic determinant of the discrete Laplacian. Acta Math. 185(2), 239–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kenyon, R.: Spanning forests and the vector bundle Laplacian. Ann. Probab. 39(5), 1983–2017 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kokotov, A.: Compact polyhedral surfaces of an arbitrary genus and determinants of Laplacians (2009). arXiv:0906.0717

  44. Kokotov, A.: Polyhedral surfaces and determinant of Laplacian. Proc. Am. Math. Soc. 141(2), 725–735 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kokotov, A., Korotkin, D.: Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray–Singer formula. J. Differ. Geom. 82(1), 35–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels, volume 254 of Progr. Math. Birkhäuser Verlag Basel (2007)

  47. Maillot, V., Rössler, D.: Conjectures sur les dérivées logarithmiques des fonctions L d’Artin aux entiers négatifs. Math. Res. Lett. 9(6), 715–724 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mazzeo, R., Rowlett, J.: A heat trace anomaly on polygons. Math. Proc. Camb. Philos. Soc. 159(2), 303–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mooers, E.A.: Heat kernel asymptotics on manifolds with conic singularities. J. Anal. Math. 78, 1–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Müller, W.: Analytic torsion and R-torsion of Riemannian manifolds. Adv. Math. 28, 233–305 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  51. Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80(1), 148–211 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  52. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103(3), 207–210 (1981)

    Article  MathSciNet  Google Scholar 

  53. Quillen, D.: Determinants of Cauchy–Riemann operators over a Riemann surface. Funct. Anal. Appl. 19(1), 31–34 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ray, D.B., Singer, I.M.: Analytic torsion. Proc. Symp. Pure Math. 23, 167–181 (1973)

    Article  MATH  Google Scholar 

  55. Ray, D.B., Singer, I.M.: Analytic torsion for complex manifolds. Ann. Math. 98(1), 154–177 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  56. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II: Fourier analysis, self- adjointness. Academic Press, p 361 (1975)

  57. Sarnak, P., Strömbergsson, A.: Minima of Epstein’s zeta function and heights of flat tori. Invent. Math. 165(1), 115–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Temperley, H.N.V.: Combinatorics: proceedings of the british combinatorial conference 1973. In: London Mathematical Society Lecture Notes Series 13 (1974)

  59. van den Berg, M., Srisatkunarajah, S.: Heat equation for a region in R 2 with a polygonal boundary. J. Lond. Math. Soc. II. Ser. 37(1), 119–127 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  60. Vertman, B.: Regularized limit of determinants for discrete tori. Monatsh. Math. 186(3), 539–557 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wolpert, S.A.: Cusps and the family hyperbolic metric. Duke Math. J. 138(3), 423–443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zorich, A.: Flat surfaces. In: Frontiers in number theory, physics, and geometry I. On random matrices, zeta functions, and dynamical systems. Papers from the meeting, Les Houches, France, March 9–21, 2003, pages 437–583. Berlin: Springer, 2nd printing edition (2006)

Download references

Acknowledgements

The author would like to thank Dmitry Chelkak, Yves Colin de Verdière for related discussions and their interest in this article, and especially Xiaonan Ma for important comments and remarks. We also thank the anonymous referee for the important comments and the colleagues from Institute Fourier, Université Grenoble Alpes, where this article has been written, for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siarhei Finski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: heat kernel and analytic torsion

Appendix: heat kernel and analytic torsion

The main goal of the appendix is to recall some folklore results about the heat kernel and the analytic torsion. More precisely, in Appendix A.1, we recall the asymptotics of the heat kernel on the surfaces with conical singularities. In Appendix A.2, we recall the Kronecker limit formula and its relation with the calculation of the analytic torsion of tori and square. We also recall the asymptotic expansion of the determinant of the discrete Laplacian on mesh graphs.

1.1 Small-time asymptotic expansion of the heat kernel

In this section we will prove Proposition 2.5. The proof is done by reducing the small-time asymptotic expansion of the heat kernel on the general flat surface to a number of model cases, for which the explicit calculations are possible.

First, let’s prove that for any \(l \in {\mathbb {N}}\), \(\epsilon > 0\) there are \(c, C > 0\) such that for any \(x \in \Sigma \) satisfying \({\mathrm{dist}}_{\Sigma }(x, {\mathrm{Con}}(\Sigma ) \cup {\mathrm{Ang}}(\Sigma )) > \epsilon \), and any \(0< t < 1\), we have

$$\begin{aligned} \Bigg \Vert \nabla ^l_{x} \exp (-t \Delta _{\Sigma }^{F})(x, \cdot ) \Bigg \Vert _{L^2(\Sigma {\setminus } B_{\Sigma }(x, \epsilon / 2) )} \le C\exp \Bigg (- \frac{c}{t} \Bigg ). \end{aligned}$$
(A.1)

The estimate (A.1) can be proven by a variety of different methods. We do it by using finite propagation speed of solutions of hyperbolic equations and interior elliptic estimates.

More precisely, for \(r > 0\), we introduce smooth even functions (cf. [46,  (4.2.11)])

$$\begin{aligned} \begin{aligned}&K_{t, r}(a) := \int _{- \infty }^{+ \infty } \exp (\sqrt{-1}v \sqrt{2t} a) \exp \Bigg ( -\frac{v^2}{2} \Bigg ) \Bigg (1 - \psi \Bigg ( \frac{\sqrt{2t} v}{r} \Bigg )\Bigg ) \frac{d v}{\sqrt{2 \pi }}, \\&G_{t, r}(a) := \int _{- \infty }^{+ \infty } \exp (\sqrt{-1}v \sqrt{2t} a) \exp \Bigg ( -\frac{v^2}{2} \Bigg ) \psi \Bigg ( \frac{\sqrt{2t} v}{r} \Bigg ) \frac{d v}{\sqrt{2 \pi }}, \end{aligned} \end{aligned}$$
(A.2)

where \(\psi : {\mathbb {R}}\rightarrow [0, 1]\) is a cut-off function satisfying

$$\begin{aligned} \psi (u) = {\left\{ \begin{array}{ll} 1 &{} \text { for } |u| < 1/2, \\ 0 &{} \text { for } |u| > 1. \\ \end{array}\right. } \end{aligned}$$
(A.3)

Let \({\widetilde{K}}_{t,r}, {\widetilde{G}}_{t,r} : {\mathbb {R}}_+ \rightarrow {\mathbb {R}}\) be the smooth functions given by \({\widetilde{K}}_{t,r}(a^2) = K_{t,r}(a), {\widetilde{G}}_{t,r}(a^2) = G_{t, r}(a)\). Then the following identity holds

$$\begin{aligned} \exp (-t \Delta _{\Sigma }^{F} ) = {\widetilde{G}}_{t,r}(\Delta _{\Sigma }^{F}) + {\widetilde{K}}_{t,r}(\Delta _{\Sigma }^{F}). \end{aligned}$$
(A.4)

By the finite propagation speed of solutions of hyperbolic equations (cf. [46,   Theorems D.2.1, 4.2.8]), the section \({\widetilde{G}}_{t,r}(\Delta _{\Sigma }^{F}) \big (z, \cdot \big )\), \(z \in \Sigma \), depends only on the restriction of \(\Delta _{\Sigma }^{F}\) onto the ball \(B_{\Sigma }(z, r)\) of radius r around z. Moreover, we have

$$\begin{aligned} {\mathrm{supp}}\, {\widetilde{G}}_{t,r}(\Delta _{\Sigma }^{F}) \big (z, \cdot ) \subset B_{\Sigma }(z, r). \end{aligned}$$
(A.5)

Remark that in [46,   Theorems D.2.1, 4.2.8], authors consider smooth manifolds, but as their reasoning essentially relies on the energy estimate, the proof of which is local and depends only on the validity of the Green’s identities, which hold in our setting according to [29,  Proposition 2.4], it will hold in our setting as well. From (A.4) and (A.5), we get

$$\begin{aligned} \exp (-t \Delta _{\Sigma }^{F})(z, y) = {\widetilde{K}}_{t,r}(\Delta _{\Sigma }^{F})(z, y) \quad \text {if} \quad {\mathrm{dist}}(z, y) > r. \end{aligned}$$
(A.6)

From (A.2), for any \(r_0 > 0\) fixed, there exists \(c' > 0\) such that for any \(m \in {\mathbb {N}}\), there is \(C>0\) such that for any \(t \in ]0, 1], r > r_0, a\in {\mathbb {R}}\), the following inequality holds (cf. [46,  (4.2.12)])

$$\begin{aligned} |a|^m | K_{t, r}(a) | \le C \exp (- c' r^2/t ). \end{aligned}$$
(A.7)

Thus, by (A.7), for \(t \in ]0,1], r > r_0, a \in {\mathbb {R}}_+\), we have

$$\begin{aligned} |a|^m | {\widetilde{K}}_{t, r}(a) | \le C \exp ( -c' r^2/ t ). \end{aligned}$$
(A.8)

Now, by (A.8), there exists \(c' > 0\) such that for any \(k \in {\mathbb {N}}\), there is \(C > 0\) such that for any \(t \in ]0,1]\) and \(r > r_0\), we have

$$\begin{aligned} \Vert (\Delta _{\Sigma }^{F})^k {\widetilde{K}}_{t, r}( \Delta _{\Sigma }^{F} ) \Vert ^{0}_{L^2(\Sigma )} \le C \exp ( - c' r^2/ t), \end{aligned}$$
(A.9)

where \(\Vert \cdot \Vert ^{0}_{L^2(\Sigma )} \) is the operator norm between the corresponding \(L^2\)-spaces. By interior elliptic estimates, applied in a \(\epsilon /2\)-neighborhood of x, we deduce that for any \(l \in {\mathbb {N}}\), there is \(C' > 0\), such that for any \(t \in ]0,1]\) and \(r > r_0\), we have

$$\begin{aligned} \Bigg \Vert \nabla ^l_{x} {\widetilde{K}}_{t, r}( \Delta _{\Sigma }^{F} ) (x, \cdot ) \Bigg \Vert _{L^2(\Sigma )} \le C' \exp ( - c' r^2/ t). \end{aligned}$$
(A.10)

We get (A.1) from (A.6) and (A.10) by taking \(r = \epsilon / 2\).

Now, by using (A.1), we compare the small-time expansions of the heat kernels on \(\Sigma \) and on some model manifolds. To do so, we prove Duhamel’s formula, which, to simplify the presentation, we formulate in a vicinity of a conical point.

We fix \(P \in {\mathrm{Con}}(\Sigma )\). We denote \(\alpha = \angle (P)\) and consider the infinite cone \(C_{\alpha }\), (2.2), with the induced metric (2.1). We denote by \(\Delta _{C_{\alpha }}\) the Friedrichs extension of the Riemannian Laplacian on \(C_{\alpha }\). Let \(\epsilon > 0\) be such that \(B_{\Sigma }(P, \epsilon )\) is isometric to \(C_{\alpha , \epsilon } := B_{C_{\epsilon }}(0, \epsilon )\). From now on, we identify those neighborhoods implicitly.

For \(x, y \in C_{\alpha }\) and \(t > 0\), we define

$$\begin{aligned} \begin{aligned}&F(x, y, t) := \exp (- t \Delta _{\Sigma }^{F})(x, y) - \exp (- t \Delta _{C_{\alpha }})(x, y), \\&G(x, y, s) := \int _{C_{\alpha , \epsilon }} \exp (- (t-s) \Delta _{\Sigma }^{F})(x, z) \cdot \exp (- s \Delta _{C_{\alpha }})(z, y) dv_{C_{\epsilon }}(z). \end{aligned} \end{aligned}$$
(A.11)

Then by the definition of the heat kernel, we have

$$\begin{aligned} \begin{aligned}&\lim _{s \rightarrow t-} G(x, y, s) = \exp (- t \Delta _{C_{\alpha }})(x, y), \\&\lim _{s \rightarrow 0+} G(x, y, s) = \exp (- t \Delta _{\Sigma }^{F})(x, y). \end{aligned} \end{aligned}$$
(A.12)

From (A.12), we deduce that

$$\begin{aligned} \exp (- t \Delta _{C_{\alpha }})(x, y) - \exp (- t \Delta _{\Sigma }^{F})(x, y) = \int _{0}^{t} \frac{d G(x, y, s)}{ds} ds. \end{aligned}$$
(A.13)

However, by the definition of the heat kernel, we have

$$\begin{aligned} \frac{d G(x, y, s)}{ds}= & {} \int _{C_{\alpha , \epsilon }} \Bigg ( \Delta _{\Sigma , x} \exp (- (t-s) \Delta _{\Sigma }^{F})(x, z) \Bigg ) \cdot \exp (- s \Delta _{C_{\alpha }})(z, y) dv_{C_{\alpha , \epsilon }}(z)\nonumber \\&- \int _{C_{\alpha , \epsilon }} \exp (- (t-s) \Delta _{\Sigma }^{F})(x, z) \cdot \Bigg ( \Delta _{C_{\alpha }, z} \exp (- s \Delta _{C_{\alpha }})(z, y) \Bigg ) dv_{C_{\alpha , \epsilon }}(z),\nonumber \\ \end{aligned}$$
(A.14)

where by \(\Delta _{\Sigma , x}\) and \(\Delta _{C_{\alpha }, z}\) we mean the Laplace operators acting on variables x and z respectively. By the symmetry of the heat kernel, we have

$$\begin{aligned} \Delta _{\Sigma , x} \exp (- (t-s) \Delta _{\Sigma }^{F})(x, z) = \Delta _{\Sigma , z} \exp (- (t-s) \Delta _{\Sigma }^{F})(x, z). \end{aligned}$$
(A.15)

Now, since both operators \(\Delta _{\Sigma }^{F}\), \(\Delta _{C_{\alpha }}\) come from Friedrichs extension of the Riemannian Laplacian, for x and y fixed, the functions \(\exp (- (t-s) \Delta _{\Sigma }^{F})(x, \cdot )\) and \(\exp (- s \Delta _{C_{\alpha }})(\cdot , y)\) are in the domain of Friedrichs extension. By Green’s identity, cf. [29,  Proposition 2.4], applied to \(C_{\alpha , \epsilon }\), and (A.13), (A.14), (A.15), we deduce

$$\begin{aligned}&\exp (- t \Delta _{C_{\alpha }})(x, y) - \exp (- t \Delta _{\Sigma }^{F})(x, y)\nonumber \\&\quad = \int _{0}^{t} \int _{\partial C_{\alpha , \epsilon }} \exp (- (t-s) \Delta _{\Sigma }^{F})(x, z) \cdot \Bigg ( \frac{\partial }{\partial n_z} \exp (- s \Delta _{C_{\alpha }})(z, y)\Bigg ) dv_{\partial C_{\alpha }}(z) ds\nonumber \\&\qquad - \int _{0}^{t} \int _{\partial C_{\alpha , \epsilon }} \Bigg ( \frac{\partial }{\partial n_z} \exp (- (t-s) \Delta _{\Sigma }^{F})(x, z) \Bigg ) \cdot \exp (- s \Delta _{C_{\alpha }})(z, y) dv_{\partial C_{\alpha }}(z) ds .\nonumber \\ \end{aligned}$$
(A.16)

The formulas of type (A.16) are also known as Duhamel’s formulas (cf. [4,   Theorem 2.48]).

From (A.1), (A.16), applied for \(y = x\) and integrated over \(\epsilon \) from \(\epsilon _0/2\) to \(\epsilon _0\), and Cauchy inequality, we deduce that there are \(c, C > 0\) such that for any \(0< t < 1\), we have

$$\begin{aligned} \Bigg | \int _{C_{\alpha , \epsilon /2}} \Bigg ( \exp (- t \Delta _{C_{\alpha }})(x, x) - \exp (- t \Delta _{\Sigma }^{F})(x, x) \Bigg ) dv_{C_{\alpha , \epsilon /2}}(x) \Bigg | \le C \exp \Bigg ( - \frac{c}{t} \Bigg ).\nonumber \\ \end{aligned}$$
(A.17)

Similarly, for \(Q \in {\mathrm{Ang}}(\Sigma )\), we denote \(\beta = \angle (Q)\) and consider the infinite angle \(A_{\beta }\) with the induced metric (2.1). We denote by \(\Delta _{A_{\beta }}\) the Friedrichs extension of the Riemannian Laplacian with Neumann boundary conditions on \(\partial A_{\beta }\). We fix \(\epsilon > 0\) in such a way that \(B_{\Sigma }(\epsilon , Q)\) is isometric to \(B_{A_{\beta }}(\epsilon , 0)\). Similarly to (A.17), we deduce that there are \(c, C > 0\) such that for any \(0< t < 1\):

$$\begin{aligned} \Bigg | \int _{C_{\alpha , \epsilon /2}} \Bigg ( \exp (- t \Delta _{A_{\beta }})(x, x) - \exp (- t \Delta _{\Sigma }^{F})(x, x) \Bigg ) dv_{A_{\beta , \epsilon /2}}(x) \Bigg | \le C \exp \Bigg ( - \frac{c}{t} \Bigg ).\nonumber \\ \end{aligned}$$
(A.18)

Now, let \(R \in \partial \Sigma \) satisfy \({\mathrm{dist}}_{\Sigma }(R, {\mathrm{Con}}(\Sigma ) \cup {\mathrm{Ang}}(\Sigma )) > \epsilon \). We consider a half plane \({\mathbb {H}}= \{(x, y) \in {\mathbb {R}}^2 : y \ge 0 \}\) and identify \(0 \in {\mathbb {H}}\) with R. Then \(B_{\Sigma }(\epsilon , R)\) is isometric to \(B_{{\mathbb {H}}}(\epsilon , 0)\). We denote by \(\Delta _{{\mathbb {H}}}\) the self-adjoint extension of the standard Laplacian with Neumann boundary conditions on \(\partial {\mathbb {H}}\). Similarly to (A.17), we deduce that there are \(c, C > 0\) such that for any \(0< t < 1\), we have

$$\begin{aligned} \Bigg | \int _{B_{{\mathbb {H}}}(0, \epsilon /2)} \Bigg ( \exp (- t \Delta _{{\mathbb {H}}})(x, x) - \exp (- t \Delta _{\Sigma }^{F})(x, x) \Bigg ) dv_{{\mathbb {H}}}(x) \Bigg | \le C \exp \Bigg ( - \frac{c}{t} \Bigg ).\nonumber \\ \end{aligned}$$
(A.19)

Finally, let \(R \in \Sigma \) satisfy \({\mathrm{dist}}_{\Sigma }(R, {\mathrm{Con}}(\Sigma ) \cup \partial \Sigma ) > \epsilon \). We consider the real plane \({\mathbb {R}}^2\) and identify \(0 \in {\mathbb {R}}^2\) with R. Then \(B_{\Sigma }(\epsilon , R)\) is isometric to \(B_{{\mathbb {R}}^2}(\epsilon , 0)\). We denote by \(\Delta _{{\mathbb {R}}^2}\) the self-adjoint extension of the standard Laplacian. Similarly to (A.17), we deduce that there are \(c, C > 0\) such that for any \(0< t < 1\), we have

$$\begin{aligned} \Bigg | \int _{B_{{\mathbb {R}}^2}(0, \epsilon /2)} \Bigg ( \exp (- t \Delta _{{\mathbb {R}}^2})(x, x) - \exp (- t \Delta _{\Sigma }^{F})(x, x) \Bigg ) dv_{{\mathbb {R}}^2}(x) \Bigg | \le C \exp \Bigg ( - \frac{c}{t} \Bigg ).\nonumber \\ \end{aligned}$$
(A.20)

To conclude, the estimates (A.17) - (A.20) show that to study the asymptotic expansion of \({{\mathrm{Tr}}} \big [ \exp (- t \Delta _{\Sigma }^{F}) \big ]\), as \(t \rightarrow 0\), it is enough to consider the analogous problem for a number of model cases: \({\mathbb {R}}^2, {\mathbb {H}}, C_{\alpha } \text { for } \alpha > 0\) and \(A_{\beta }\) for \(\beta > 0\).

We will start with the simplest one, which is \({\mathbb {R}}^2\). Here, we have the following identity

$$\begin{aligned} \exp (- t \Delta _{{\mathbb {R}}^2})(x, y) = \frac{1}{4 \pi t} \exp \Bigg (- \frac{|x - y|^2}{4t} \Bigg ). \end{aligned}$$
(A.21)

By (A.1), (A.16) and (A.21), we deduce that there are \(c, C > 0\) such that for any \(x \in \Sigma \) satisfying \({\mathrm{dist}}_{\Sigma }(x, {\mathrm{Con}}(\Sigma ) \cup \partial \Sigma ) > \epsilon \), and any \(0< t < 1\), we have

$$\begin{aligned} \Bigg | \exp (- t \Delta _{\Sigma }^{F})(x, x) - \frac{1}{4 \pi t} \Bigg | \le C \exp \Bigg (-\frac{c}{t} \Bigg ). \end{aligned}$$
(A.22)

Now, on the half-plane \({\mathbb {H}}\) and \(z_1, z_2 \in {\mathbb {H}}\), we clearly have

$$\begin{aligned} \exp (- t \Delta _{{\mathbb {H}}})(z_1, z_2) = \exp (- t \Delta _{{\mathbb {R}}^2})(z_1, z_2) + \exp (- t \Delta _{{\mathbb {R}}^2})(z_1, \overline{z_2}). \end{aligned}$$
(A.23)

From (A.21) and (A.23), after an easy calculation, we see that for any \(k \in {\mathbb {N}}\) and for any \(f \in {\mathscr {C}}^{\infty }_{0}({\mathbb {H}})\), there is \(C > 0\) such that for \(0< t < 1\), we have

$$\begin{aligned}&\Bigg | \int _{{\mathbb {H}}} f(x) \exp (- t \Delta _{{\mathbb {H}}})(x, x) dv_{{\mathbb {H}}}(x) - \frac{1 }{4 \pi t} \int _{{\mathbb {H}}} f(x) dv_{{\mathbb {H}}}(x)\nonumber \\&\quad - \frac{1}{4 \pi \sqrt{t}} \sum _{l = 0}^{2 k + 1} \frac{t^l \Gamma (\frac{l + 1}{2})}{l!} \int _{\partial {\mathbb {H}}}\frac{\partial ^{l} f}{\partial y^{l}}(x, 0) dv_{\partial {\mathbb {H}}}(x) \Bigg | \le C t^{k}. \end{aligned}$$
(A.24)

Let’s now study the cone \(C_{\alpha }\), \(\alpha > 0\). Carslaw in [14] (cf. also Kokotov [43,   Sect. 3.1]), gave an explicit formula for the heat kernel on \(C_{\alpha }\). By using this formula, Kokotov proved in [43,  Proposition 1, Remark 1] that for any \(\epsilon > 0\), there are \(c, C > 0\) such that for any \(0< t < 1\):

$$\begin{aligned} \Bigg | \int _{B_{C_{\alpha }}(0, \epsilon )} \exp (- t \Delta _{C_{\alpha }})(x, x) dv_{C_{\alpha }}(x) - \frac{\alpha \epsilon ^2}{8 \pi t} - \frac{1}{12} \frac{4 \pi ^2 - \alpha ^2}{2 \pi \alpha } \Bigg | \le C \exp \Bigg (-\frac{c}{t} \Bigg ). \end{aligned}$$
(A.25)

Let’s finally study the angle \(A_{\beta }\), \(\beta > 0\). Recall that in [59,   Theorem 1], Berg-Srisatkunarajah have obtained the small-time asymptotic expansion of the heat trace associated to the Friedrichs extension of the Laplacian on the angle endowed with Dirichlet boundary conditions. In [48,  Proposition 2.1 and (4.2)], Mazzeo-Rowlett used this result, along with (A.25), and an interpretation of a cone through gluing of two angles: with Dirichlet and Neumann boundary conditions, to show that for any and \(\epsilon > 0\), there are \(c, C > 0\) such that for any \(0< t < 1\), we have

$$\begin{aligned} \Bigg | \int _{B_{A_{\beta }}(0, \epsilon )} \exp (- t \Delta _{A_{\beta }})(x, x) dv_{A_{\beta }}(x) - \frac{\beta \epsilon ^2}{8 \pi t} - \frac{2 \epsilon }{4 \sqrt{\pi } \sqrt{t}} - \frac{1}{12} \frac{\pi ^2 - \beta ^2}{2 \pi \beta } \Bigg | \le C \exp \Bigg (-\frac{c}{t} \Bigg ).\nonumber \\ \end{aligned}$$
(A.26)

By (A.17)-(A.20), (A.22), (A.24), (A.25) and (A.26), we easily conclude that Proposition 2.5 holds.

1.2 Kronecker limit formula and the analytic torsion

The goal of this section is to recall some explicit formulas for the analytic torsion and the asymptotic expansion of the determinants of discrete Laplacians on the mesh graphs. The material of this section is classical, and we include it here only to make this paper self-contained.

We start by considering the continuous side of the story. We fix \(a, b \in {\mathbb {N}}^*\) and consider a torus \({\mathbb {T}}_{a,b} := {\mathbb {R}}^2 / (a {\mathbb {Z}}\times b {\mathbb {Z}})\). The standard Laplacian \(\Delta _{{\mathbb {R}}^2} := - \frac{\partial ^2}{\partial x^2} - \frac{\partial ^2}{\partial y^2}\) descends to Laplacian \(\Delta _{{\mathbb {T}}_{a,b}}\), acting on the functions on \({\mathbb {T}}_{a,b}\). Classically, the eigenvalues of \(\Delta _{{\mathbb {T}}_{a,b}}\) are given by

$$\begin{aligned} {\mathrm{Spec}}\big ( \Delta _{{\mathbb {T}}_{a,b}} \big ) = \Bigg \{ (2 \pi )^2 \Bigg ( \Bigg ( \frac{n}{a} \Bigg )^2 + \Bigg ( \frac{m}{b} \Bigg )^2 \Bigg ) : n, m \in {\mathbb {Z}}\Bigg \}. \end{aligned}$$
(A.27)

So the associated spectral zeta function \(\zeta _{{\mathbb {T}}_{a,b}}(s)\) is given by

$$\begin{aligned} \zeta _{{\mathbb {T}}_{a,b}}(s) = (2 \pi )^{-2s} \sum _{(m, n) \ne (0, 0)} \frac{1}{((n/a)^2 + (m/b)^2)^s}. \end{aligned}$$
(A.28)

We rewrite it in the following form

$$\begin{aligned} \zeta _{{\mathbb {T}}_{a,b}}(s) = (ab)^s E(z, s), \end{aligned}$$
(A.29)

where \(z := \sqrt{-1}\frac{a}{b}\), and

$$\begin{aligned} E(z, s) = (2 \pi )^{-2s} \sum _{(m, n) \ne (0, 0)} \frac{{\text {Im}}(z)^s}{|nz + m|^{2s}}. \end{aligned}$$
(A.30)

The function E(zs) is the Eisenstein series multiplied by \((2 \pi )^{-2s}\) and thus it admits a meromorphic continuation to \({\mathbb {C}}\). By Kronecker limit formula, it has the following expansion near \(s = 0\):

$$\begin{aligned} E(z, s) = - 1 - s \log \Bigg ( \frac{a}{b} \cdot \nu \big ( e^{- \frac{2 \pi a}{b}} \big )^4 \Bigg ) + o(s), \end{aligned}$$
(A.31)

where \(\nu : D(1) \rightarrow {\mathbb {C}}\) is the Dedekind eta-function, defined by

$$\begin{aligned} \nu (q) = q^{1/24} \prod _{n \ge 1} (1 - q^n). \end{aligned}$$
(A.32)

By (A.29) and (A.31), we obtain

$$\begin{aligned} \log \det {}' \Delta _{{\mathbb {T}}_{a,b}} = -\zeta _{{\mathbb {T}}_{a,b}}'(0) = \log (ab) + \log \Bigg ( \frac{a}{b} \cdot \nu \big ( e^{- \frac{2 \pi a}{b}} \big )^4 \Bigg ). \end{aligned}$$
(A.33)

Remark that (A.33) goes in line with Duplantier-David [25,  (3.18)] and Corollary 1.3.

Now, consider a square \([0, a] \times [0, b] \subset {\mathbb {C}}\). We consider the Friedrichs extension of the standard Laplacian \(\Delta _{[0, a] \times [0, b]}\) endowed with Neumann boundary conditions. The eigenvalues of \(\Delta _{[0, a] \times [0, b]}\) are given by

$$\begin{aligned} {\mathrm{Spec}}\big ( \Delta _{[0, a] \times [0, b]} \big ) = \Bigg \{ \pi ^2 \Bigg ( \Bigg ( \frac{n}{a} \Bigg )^2 + \Bigg ( \frac{m}{b} \Bigg )^2 \Bigg ) : n, m \in {\mathbb {N}}\Bigg \}. \end{aligned}$$
(A.34)

So the associated spectral zeta function \(\zeta _{[0, a] \times [0, b]}(s)\) is related to the zeta function of torus \({\mathbb {T}}_{a, b}\) by

$$\begin{aligned} \zeta _{[0, a] \times [0, b]}(s) = 4^{s - 1} \zeta _{{\mathbb {T}}_{a, b}}(s) + \frac{1}{2} \Bigg ( \Bigg ( \frac{a}{\pi } \Bigg )^{2s} + \Bigg ( \frac{b}{\pi } \Bigg )^{2s} \Bigg ) \zeta (2s), \end{aligned}$$
(A.35)

where \(\zeta (s)\) is the Riemann zeta function. By using identities

$$\begin{aligned} \zeta (0) = -\frac{1}{2}, \qquad \zeta '(0) = - \frac{\log (2\pi )}{2}, \end{aligned}$$
(A.36)

and (A.31), (A.33), we get the following expression

$$\begin{aligned} \log \det {}' \Delta _{[0, a] \times [0, b]} = -\zeta _{[0, a] \times [0, b]}'(0) = \frac{3}{4} \log (ab) + \frac{1}{4} \log \Bigg ( \frac{a}{b} \cdot \nu \big ( e^{- \frac{2 \pi a}{b}}\big )^4 \Bigg ) + \frac{3}{2} \log (2).\nonumber \\ \end{aligned}$$
(A.37)

We also obtain that \(\zeta _{[0, a] \times [0, b]}(0) = -\frac{3}{4}\), which is compatible with (1.12).

Now, let us study the discrete side of the problem. As in Sect. 4.1, construct a family of graphs \(A_{an \times bn}\), \(n \in {\mathbb {N}}^*\). We use the notation as in Theorem 1.1. Using explicit formula (A.37) Duplantier-David in [25,  (4.7) and (4.23)] proved the following theorem.

Theorem A.1

As \(n \rightarrow \infty \), the following asymptotic expansion holds

$$\begin{aligned}&\log (\det {}'\Delta _{A_{an \times bn}}) = \frac{4 G ab}{\pi } \cdot n^2 + \log (\sqrt{2} - 1) \cdot (a + b) \cdot n + \frac{\log (n)}{2}\nonumber \\&\quad + \log ( \det {}' \Delta _{\Sigma }^{F} ) - \frac{\log (2)}{4} + o(1). \end{aligned}$$
(A.38)

We see, in particular that Theorem 1.1 is compatible with Theorem A.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finski, S. Spanning trees, cycle-rooted spanning forests on discretizations of flat surfaces and analytic torsion. Math. Z. 301, 3285–3343 (2022). https://doi.org/10.1007/s00209-022-03020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03020-9

Navigation