Skip to main content

Advertisement

Log in

The anti-hyperalgesic activity of retigabine is mediated by KCNQ potassium channel activation

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Retigabine (N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester) has a broad anticonvulsant spectrum and is currently in clinical development for epilepsy. The compound has an opening effect on neuronal KCNQ channels. At higher concentrations an augmentation of gamma-aminobutyric acid (GABA) induced currents as well as a weak blocking effect on sodium and calcium currents were observed. The goal of this study was to characterise the activity of retigabine in models of acute and neuropathic pain and to investigate if the potassium channel opening effect of retigabine contributes to its activity.

Retigabine was tested in mice and rats in the tail flick model of acute pain and in the nerve ligation model with tight ligation of the 5th spinal nerve (L5) using both thermal and tactile stimulation. While retigabine like gabapentin had almost no analgesic effect in mice it showed some analgesic effects in rats in the tail flick model. These effects could not be antagonised with linopirdine, a selective KCNQ potassium channel blocker, indicating a different mode of action for this activity. In L5-ligated rats retigabine significantly and dose-dependently elevated the pain threshold and prolonged the withdrawal latency after tactile and thermal stimulation, respectively. In the L5 ligation model with thermal stimulation retigabine 10 mg/kg p.o. was as effective as 100 mg/kg gabapentin or 10 mg/kg tramadol. The L5 model with tactile stimulation was used to test the role of the KCNQ potassium channel opening effect of retigabine. If retigabine 10 mg/kg p.o. was administered alone it was as effective as tramadol 10 mg/kg p.o. in elevating the pain threshold. Linopirdine (1 and 3 mg/kg i.p.) had nearly no influence on neuropathic pain response. If we administered both retigabine and linopirdine the effect of retigabine was abolished or diminished depending on the dose of linopirdine used.

In summary, retigabine is effective in predictive models for neuropathic pain. The activity is comparable to tramadol and is present at lower doses compared with gabapentin. Since the anti-allodynic effect can be inhibited by linopirdine we can conclude that the potassium channel opening properties of retigabine are critically involved in its ability to reduce neuropathic pain response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdi S, Lee DH, Chung JM (1998) The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesth Analg 87:1360–1366

    CAS  PubMed  Google Scholar 

  • Aiken SP, Lampe BJ, Murphy PA, Brown BS (1995) Reduction of spike frequency adaptation and blockade of M-current in rat CA1 pyramidal neurones by linopirdine (DuP 996), a neurotransmitter release enhancer. Br J Pharmacol 115:1163–1168

    CAS  PubMed  Google Scholar 

  • Aiken SP, Zaczek R, Brown BS (1996) Pharmacology of the neurotransmitter release enhancer linopirdine (DuP 996), and insights into its mechanism of action. Adv Pharmacol 35:349–384

    CAS  PubMed  Google Scholar 

  • Alaburda A, Perrier JF, Hounsgaard J (2002) An M-like outward current regulates the excitability of spinal motoneurones in the adult turtle. J Physiol 540:875–881

    CAS  PubMed  Google Scholar 

  • Ali Z, Ringkamp M, Hartke TV, Chien HF, Flavahan NA, Campbell JN, Meyer RA (1999) Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol 81:455–466

    CAS  PubMed  Google Scholar 

  • Apaydin S, Uyar M, Karabay NU, Erhan E, Yegul I, Tuglular I (2000) The antinociceptive effect of tramadol on a model of neuropathic pain in rats. Life Sci 66:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Backonja M (2002) Use of anticonvulsants for treatment of neuropathic pain. Neurology 59 [Suppl 2]:14–17

    Google Scholar 

  • Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M, La Moreaux L, Garofalo E (1998) Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomised controlled trial. JAMA 280:1831–1836

    CAS  PubMed  Google Scholar 

  • Bianchi M, Panerai AE (1998) Anti-hyperalgesic effects of tramadol in the rat. Brain Res 797:163–166

    Article  CAS  PubMed  Google Scholar 

  • Blackburn-Munro G, Jensen BS (2003) The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol 460:109–116

    Article  CAS  PubMed  Google Scholar 

  • Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB (2000) Potent analgesic effects of GDNF in neuropathic pain states. Science 290:124–127

    Article  CAS  PubMed  Google Scholar 

  • Brioni JD, Curzon P, Buckley MJ, Arneric SP, Decker MW (1993) Linopirdine (DuP996) facilitates the retention of avoidance training and improves performance of septal-lesioned rats in the water maze. Pharmacol Biochem Behav 44:37–43

    Article  CAS  PubMed  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    CAS  PubMed  Google Scholar 

  • Chung JM, Chung K (2002) Importance of hyperexcitability of DRG neurons in neuropathic pain. Pain Practice 2:87–97

    Article  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  CAS  PubMed  Google Scholar 

  • Devor M (1992) Potassium channels moderate ectopic excitability of nerve end neuromas in rats. Neurosci Lett 138:225–228

    Article  PubMed  Google Scholar 

  • Devor M (1994) The pathophysiology of damaged peripheral nerve. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill Livingstone, New York, pp 79–100

  • Dixon WJ (1980) Efficient analysis of experimental observations. Ann Rev Pharmacol Toxicol 20:441–461

    Article  CAS  Google Scholar 

  • Dost R, Rundfeldt C (2003) The effect of retigabine on neuropathic pain is inhibited by linopirdine in rats. Pain in Europe IV. 4th congress of EFIC—the European Federation of the International Association for the Study of Pain Chapters. Prague, Czech Republic, September 2–6, 2003. Book of Abstracts 188.T

  • Dupuis DS, Schroder RL, Jespersen T, Christensen JK, Christophersen P, Jensen BS, Olesen SP (2002) Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352. Eur J Pharmacol 437:129–137

    Article  CAS  PubMed  Google Scholar 

  • Erichsen HK, Blackburn-Munro G (2002) Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain 98:151–161

    Article  CAS  PubMed  Google Scholar 

  • Field MJ, Oles RJ, Lewis AS, McCleary S, Hughes J, Singh L (1997) Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br J Pharmacol 121:1513–1522

    CAS  PubMed  Google Scholar 

  • Field MJ, McCleary S, Hughes J, Singh L (1999) Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain 80:391–398

    Article  CAS  PubMed  Google Scholar 

  • Flagmeyer I, Van der Staay FJ (1995) Linopirdine (DUP 996; AVIVA): its effects in the Morris water escape tank and on retention of an incompletely acquired bar-press response in rodents. Pharmacol Biochem Behav 51:111–117

    Article  CAS  PubMed  Google Scholar 

  • Flagmeyer I, Gebert I, Van der Staay FJ (1995) General pharmacology of the putative cognition enhancer linopirdine. Arzneimittelforschung 45:456–459

    CAS  PubMed  Google Scholar 

  • Girard P, Pansart Y, Coppe MC, Gillardin JM (2001) Nefopam reduces thermal hypersensitivity in acute and postoperative pain models in the rat. Pharmacol Res 44:541–545

    Article  CAS  PubMed  Google Scholar 

  • Gobel H, Stadler T (1997) Traitement des douleurs post-zosteriennes par le tramadol. Resultats d’une etude pilote ouverte versus clomipramine avec ou sans levomepromazine. Drugs 53 [Suppl 2]:34–39

    Google Scholar 

  • Groves PM, Thompson RF (1970) Habituation: a dual-process theory. Psychol Rev 77:419–450

    CAS  PubMed  Google Scholar 

  • Harati Y, Gooch C, Swenson M, Edelman SV, Greene D, Raskin P, Donofrio P, Cornblath D, Olson WH, Kamin M (2000) Maintenance of the long-term effectiveness of tramadol in treatment of the pain of diabetic neuropathy. J Diabetes Complications 14:65–70

    Article  CAS  PubMed  Google Scholar 

  • Hunskaar S, Berge OG, Hole K (1986) A modified hot-plate test sensitive to mild analgesics. Behav Brain Res 21:101–108

    Article  CAS  PubMed  Google Scholar 

  • Hunter JC, Gogas KR, Hedley LR, Jacobson LO, Kassotakis L, Thompson J, Fontana DJ (1997) The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 324:153–160

    Article  CAS  PubMed  Google Scholar 

  • Jensen TS, Yaksh TL (1986) Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat. Brain Res 363:99–113

    Article  CAS  PubMed  Google Scholar 

  • Kajander KC, Wakisaka S, Bennett GJ (1992) Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci Lett 138:225–228

    Article  PubMed  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    CAS  PubMed  Google Scholar 

  • Koltzenburg M, Kees S, Budweiser S, Ochs G, Toyka KV (1994) The properties of the unmyelinated nociceptive afferents change in a painful chronic constriction neuropathy. In: Gebhart GF, Hammond DL, Jensen TS (eds) Proceedings of the 7th World Congress on Pain. Progress in pain research and management, vol 2. IASP, Seattle, pp 511–522

  • Kontinen VK, Meert TF (2003) Predictive validity of neuropathic pain models in pharmacological studies with a behavioural outcome in the rat: a systematic review. In: Dostrovsky JO, Carr DB, Koltzenburg M (eds) Proceedings of the 10th World Congress on Pain. Progress in pain research and management, vol 24. IASP, Seattle, pp 489–498

  • Laughlin TM, Tram KV, Wilcox GL, Birnbaum AK (2002) Comparison of antiepileptic drugs tiagabine, lamotrigine, and gabapentin in mouse models of acute, prolonged, and chronic nociception. J Pharmacol Exp Ther 302:1168–1175

    Article  CAS  PubMed  Google Scholar 

  • Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53:597–652

    PubMed  Google Scholar 

  • Lewis KS, Han N (1997) Tramadol: a new centrally acting analgesic. Am J Health Syst Pharm 54:643–652

    CAS  PubMed  Google Scholar 

  • Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M (2000) Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85:503–521

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Eschenfelder S, Blenk K-H, Jänig W, Häbler H-J (2000) Spontaneous activity of axotomized afferent neurons after L5 spinal nerve injury. Pain 84:309–318

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhou J, Chung K, Chung JM (2001) Ion channel associated with the ectopic discharges generated after segmental spinal nerve injury in rat. Brain Res 900:119–127

    Article  CAS  PubMed  Google Scholar 

  • Luo ZD, Calcutt NA, Higuera ES, Valder CR, Song YH, Svensson CI, Myers RR (2002) Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 303:1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA (2000) Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 58:253–262

    CAS  PubMed  Google Scholar 

  • Martin TJ, Eisenach JC (2001) Pharmacology of opioid and nonopioid analgesics in chronic pain states. J Pharmacol Exp Ther 299:811–817

    CAS  PubMed  Google Scholar 

  • Matthews EA, Tandon J, Dickenson AH (2002) Effects of activation of M-type K+ currents by the anticonvulsant retigabine on dorsal horn neuronal responses in rats. In: Abstracts 10th World Congress on Pain, August 17–22, 2002, San Diego (California). IASP, Seattle, pp 516–517

  • Matzner O, Devor M (1994) Hyperexcitability at sites of nerve injury depends on voltage sensitive Na+ channels. J Neurophysiol 72:349–359

    CAS  PubMed  Google Scholar 

  • McMahon SB (2002) Neuropathic pain mechanisms. In: Pain 2002—an updated review. Refresher Course Syllabus. 10th World Congress on Pain. August 17–22, 2002, San Diego (California). IASP, Seattle, pp 155–164

  • Merskey H, Bogduk M (1994) Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms, 2nd edn. IAPS, Seattle

    Google Scholar 

  • Na HS, Leem JW, Chung JM (1993) Abnormalities of mechanoreceptors in a rat model of neuropathic pain: possible involvement in mediating mechanical allodynia. J Neurophysiol 70:522–528

    CAS  PubMed  Google Scholar 

  • Noda M, Obana M, Akaike N (1998) Inhibition of M-type K+ current by linopirdine, a neurotransmitter-release enhancer, in NG108–15 neuronal cells and rat cerebral neurons in culture. Brain Res 794:274–280

    Article  PubMed  Google Scholar 

  • Okada M, Wada K, Kamata A, Murakami T, Zhu G, Kaneko S (2002) Impaired M-current and neuronal excitability. Epilepsia 43 [Suppl 9]:36–38

  • Pan HL, Eisenach JC, Chen SR (1999) Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. J Pharmacol Exp Ther 288:1026–1030

    CAS  PubMed  Google Scholar 

  • Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, Dickenson AH, Brown TA, Burbidge SA, Main M, Brown DA (2003) KCNQ/M currents in sensory neurons: significance for pain therapy [in process citation]. J Neurosci 23:7227–7236

    CAS  PubMed  Google Scholar 

  • Raffa RB, Friderichs E, Reimann W et al (1992) Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp 260:275–285

    CAS  PubMed  Google Scholar 

  • Rice AS, Maton S (2001) Gabapentin in postherapeutic neuralgia: a randomised, double blind, placebo controlled study. Pain 94:215–224

    Article  CAS  PubMed  Google Scholar 

  • Robbins J (2001) KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther 90:1–19

    Article  CAS  PubMed  Google Scholar 

  • Rose MA, Kam PC (2002) Gabapentin: pharmacology and its use in pain management. Anaesthesia 57:451–462

    Article  CAS  PubMed  Google Scholar 

  • Rostock A, Tober C, Rundfeldt C, Bartsch R, Engel J, Polymeropoulos EE, Kutscher B, Loescher W, Hoenack D, White HS, Wolf HH (1996) D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res 23:211–223

    CAS  PubMed  Google Scholar 

  • Rostock A, Rundfeldt C, Bartsch R (2000) Effects of the anticonvulsant retigabine in neuropathic pain models in rats. Naunyn-Schmiedebergs Arch Pharmacol 361 [Suppl]:R99

  • Rundfeldt C (1997) The new anticonvulsant retigabine (D-23129) acts as an opener of K+ channels in neuronal cells. Eur J Pharmacol 336:243–249

    CAS  PubMed  Google Scholar 

  • Rundfeldt C (1999) Characterisation of the K+ channel opening effect of the anticonvulsant retigabine in PC12 cells. Epilepsy Res 35:99–107

    CAS  PubMed  Google Scholar 

  • Rundfeldt C, Dost R (1997) The potassium channel opening property of the new anticonvulsant D-23129 is selective for neuronal cells. Naunyn-Schmiedebergs Arch Pharmacol 355 [Suppl]:R91

  • Rundfeldt C, Netzer R (1998) Characterisations of the K+-channel opening effect of the anticonvulsant retigabine in PC12 cells. Soc Neurosci Abstr 24:1940

    Google Scholar 

  • Rundfeldt C, Netzer R (2000a) Retigabine stabilises neuronal cell activity in epileptic patients by activating KCNQ2/3 channels and its mutation. Soc Neurosci Abstr 26:1783

    Google Scholar 

  • Rundfeldt C, Netzer R (2000b) The new anticonvulsant retigabine activates colonally expressed M-type potassium channels in CHO cells. Naunyn-Schmiedebergs Arch Pharmacol 361 [Suppl]:R99

  • Rundfeldt C, Netzer R (2000c) The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells transfected with human KCNQ2/3 subunits. Neurosci Lett 282:73–76

    PubMed  Google Scholar 

  • Rundfeldt C, Rohlfs A, Netzer R (1995) Multiple actions of the new anticonvulsant D-23129 on voltage gated inward currents and GABA-induced currents in cultured neuronal cells. Naunyn-Schmiedebergs Arch Pharmacol 351 [Suppl]:R160

  • Rundfeldt C, Ludwig J, Bischoff U, Netzer R (1999a) Investigations to elucidate the agonist properties of retigabine K+ currents using cloned channels. Soc Neurosci Abstr 25:1868

    Google Scholar 

  • Rundfeldt C, Ludwig J, Bischoff U, Netzer R (1999b) The new K+ channel agonistic anticonvulsant retigabine does not interact with cloned K+ channels of the eag and erg family. Epilepsia 40 [Suppl 7]:9

  • Schnee ME, Brown BS (1998) Selectivity of linopirdine (DuP 996), a neurotransmitter release enhancer, in blocking voltage-dependent and calcium-activated potassium currents in hippocampal neurons. J Pharmacol Exp Ther 286:709–717

    CAS  PubMed  Google Scholar 

  • Schroder RL, Jespersen T, Christophersen P, Strobaek D, Jensen BS, Olesen SP (2001) KCNQ4 channel activation by BMS-204352 and retigabine. Neuropharmacology 40:888–898

    Google Scholar 

  • Serpell MG (2002) Gabapentin in neuropathic pain syndromes: a randomised, double-blind, placebo-controlled trial. Pain 99:557–566

    Article  CAS  PubMed  Google Scholar 

  • Sindrup SH, Jensen TS (1999) Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 83:389–400

    CAS  PubMed  Google Scholar 

  • Sindrup SH, Madsen C, Brosen K, Jensen TS (1999) The effect of tramadol in painful polyneuropathy in relation to serum drug and metabolite levels. Clin Pharmacol Ther 66:636–641

    CAS  PubMed  Google Scholar 

  • Tatulian L, Delmas P, Abogadie FC, Brown DA (2001) Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci 21:5535–5545

    CAS  PubMed  Google Scholar 

  • Taylor CP, Gee NS, Su TZ, Kocsis JD, Welty DF, Brown JP, Dooley DJ, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29:233–249

    CAS  PubMed  Google Scholar 

  • Tober C, Rostock A, Rundfeldt C, Bartsch R (1996) D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol 303:163–169

    CAS  PubMed  Google Scholar 

  • Tober C, Rostock A, Bartsch R (1997) Anti-epileptogenic effect of D-23129 (retigabine) in the amygdala kindling model of epilepsy. Eur J Neurosci 10 [Suppl 10]:42

    Google Scholar 

  • Tremont-Lukats IW, Megeff C, Backonja MM (2000) Anticonvulsants for neuropathic pain syndromes: mechanisms of action and place in therapy. Drugs 60:1029–1052

    CAS  PubMed  Google Scholar 

  • Tsai YC, Won SJ (2001) Effects of tramadol on T lymphocyte proliferation and natural killer cell activity in rats with sciatic constriction injury. Pain 92:63–69

    Article  CAS  PubMed  Google Scholar 

  • Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen US, Dixon JE, McKinnon D (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–1893

    CAS  PubMed  Google Scholar 

  • Wickenden AD, Yu W, Zou A, Jegla T, Wagoner PK (2000) Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol Pharmacol 58:591–600

    CAS  PubMed  Google Scholar 

  • Wickenden AD, Zou A, Wagoner PK, Jegla T (2001) Characterisation of KCNQ5/Q3 potassium channels expressed in mammalian cells. Br J Pharmacol 132:381–384

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The presented investigations were funded by EFRE grants of the EU and by grants of the Free State of Saxonia (Project number SAB: 5242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dost, R., Rostock, A. & Rundfeldt, C. The anti-hyperalgesic activity of retigabine is mediated by KCNQ potassium channel activation. Naunyn-Schmiedeberg's Arch Pharmacol 369, 382–390 (2004). https://doi.org/10.1007/s00210-004-0881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0881-1

Keywords

Navigation