Skip to main content

Advertisement

Log in

A selective T-type Ca2+ channel blocker R(−) efonidipine

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Recently, novel compound R(−) efonidipine was reported to selectively block low-voltage-activated (LVA or T-type) Ca2+ channels in peripheral organs. We examined how R(−) efonidipine acts on T-type and high-voltage-activated (HVA) Ca2+ channels in mammalian central nervous system (CNS) neurons. Furthermore, we compared the effects of R(−) efonidipine with those of flunarizine and mibefradil on both T-type and HVA Ca2+ channels in rat hippocampal CA1 neurons by using the nystatin perforated-patch clamp technique. Flunarizine and mibefradil nonselectively inhibited both T-type and HVA Ca2+ channels, though the dose-dependent blocking potency of flunarizine on T-type Ca2+ channels was slightly stronger than that of mibefradil. In contrast, R(−) efonidipine inhibited only T-type Ca2+ channels and did not show any effect on HVA Ca2+ channels. The inhibitory actions of R(−) efonidipine or flunarizine were similar on both Ba2+ and Ca2+ current components passing through T-type Ca2+ channels. In addition, flunarizine but not R(−) efonidipine inhibited voltage-dependent Na+ channels and Ca2+-activated K+ channels. Thus, it appears that R(−) efonidipine is a selective blocker for T-type Ca2+ channels. It could be used as a pharmacological tool in future studies on T-type Ca2+ channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike N (1996) Heterogeneous distribution of LVA and HVA calcium channels in mammalian brain tissue. In: Tsien RW, Clozel JP, Nargeot J (eds) Low-Voltage-Activated T-type Calcium Channels, Adis International, Chester, pp 53–62

    Google Scholar 

  • Akaike N, Harata N (1994) Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Jpn J Physiol 44:433–473

    Article  PubMed  CAS  Google Scholar 

  • Akaike N, Takahashi K (1992) Tetrodotoxin-sensitive calcium-conducting channels in the rat hippocampal CA1 region. J Physiol 450:529–546

    PubMed  CAS  Google Scholar 

  • Akaike N, Kanaide H, Kuga T, Nakamura M, Sadoshima J, Tomoike H (1989a) Low-voltage-activated calcium current in rat aorta smooth muscle cells in primary culture. J Physiol 416:141–160

    PubMed  CAS  Google Scholar 

  • Akaike N, Kostyuk PG, Osipchuk YV (1989b) Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones. J Physiol 412:181–195

    PubMed  CAS  Google Scholar 

  • Akaike N, Takahashi K, Morimoto M (1991) Heterogeneous distribution of tetrodotoxin-sensitive calcium-conducting channels in rat hippocampal CA1 neurons. Brain Res 556:135–138

    Article  PubMed  CAS  Google Scholar 

  • Alps BJ, Calder C, Hass WK, Wilson AD (1988) Comparative protective effects of nicardipine, flunarizine, lidoflazine and nimodipine against ischaemic injury in the hippocampus of the Mongolian gerbil. Br J Pharmacol 93:877–883

    PubMed  CAS  Google Scholar 

  • Artru AA, Michenfelder JD (1980) Cerebral protective, metabolic, and vascular effects of phenytoin. Stroke 11:377–382

    PubMed  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469

    Article  PubMed  CAS  Google Scholar 

  • Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83:103–109

    PubMed  CAS  Google Scholar 

  • Cullen JP, Aldrete JA, Jankovsky L, Romo-Salas F (1979) Protective action of phenytoin in cerebral ischemia. Anesth Analg 58:165–169

    PubMed  CAS  Google Scholar 

  • Ertel SI, Ertel EA, Clozel JP (1997) T-type Ca2+ channels and pharmacological blockade: potential pathophysiological relevance. Cardiovasc Drugs Ther 11:723–739

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Miura R, Honda M, Kamiya N, Mori Y, Takeshita S, Isshiki T, Nukada T (2004) Identification of R(−)-isomer of efonidipine as a selective blocker of T-type Ca2+ channels. Br J Pharmacol 143:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Nagaoka K, Watari Y, Taiga K, Watanabe Y, Honda M, Koganwzawa T, Sagawa S (2005) The characterization of three kind of dihydropyridine calcium channel antagonists on T-type calcium channel subtypes. Jpn J Electrocardiol 22:46

    Google Scholar 

  • Gomora JC, Xu L, Enyeart JA, Enyeart JJ (2000) Effect of mibefradil on voltage-dependent gating and kinetics of T-type Ca(2+) channels in cortisol-secreting cells. J Pharmacol Exp Ther 292:96–103

    PubMed  CAS  Google Scholar 

  • Greenberg DA, Carpenter CL, Messing RO (1987) Ethanol-induced component of 45Ca2+ uptake in PC12 cells is sensitive to Ca2+ channel modulating drugs. Brain Res 410:143–146

    Article  PubMed  CAS  Google Scholar 

  • Hermsmeyer K, Mishra S, Miyagawa K, Minshall R (1997) Physiologic and pathophysiologic relevance of T-type calcium-ion channels: potential indications for T-type calcium antagonists. Clin Ther 19(Suppl A):18–26

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi H, Akaike N (1995) Somatostatin modulates high-voltage-activated Ca channels in freshly dissociated rat hippocampal neurons. J Neurophysiol 74:1028–1036

    PubMed  CAS  Google Scholar 

  • Ishibashi H, Rhee JS, Akaike N (1995) Regional difference of high voltage-activated Ca2+ channels in rat CNS neurones. Neuroreport 6:1621–1624

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19:1912–1921

    PubMed  CAS  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Article  PubMed  CAS  Google Scholar 

  • Massieu L, Garcia O (1998) The role of excitotoxicity and metabolic failure in the pathogenesis of neurological disorders. Neurobiology (Bp) 6:99–108

    CAS  Google Scholar 

  • Matsumura T, Furuichi H, Izumi J, Suda H, Ito S, Takei M, Nishi N, Mori T, Tanaka Y, Kurimoto T (1995) Effect of efonidipine hydrochloride, a calcium channel blocker, on the experimental cerebral ischemia/anoxia. Nippon Yakurigaku Zasshi 105:437–446

    PubMed  CAS  Google Scholar 

  • Masumiya H, Shijuku T, Tanaka H, Shigenobu K (1998) Inhibition of myocardial L- and T-type Ca2+ currents by efonidipine: possible mechanism for its chronotropic effect. Eur J Pharmacol 349:351–357

    Article  PubMed  CAS  Google Scholar 

  • McDonough SI, Bean BP (1998) Mibefradil inhibition of T-type calcium channels in cerebellar Purkinje neurons. Mol Pharmacol 54:1080–1087

    PubMed  CAS  Google Scholar 

  • Mintz IM, Adams ME, Bean BP (1992) P-type calcium channels in rat central and peripheral neurons. Neuron 9:85–95

    Article  PubMed  CAS  Google Scholar 

  • Nikonenko I, Bancila M, Bloc A, Muller D, Bijlenga P (2005) Inhibition of T-type calcium channels protects neurons from delayed ischemia-induced damage. Mol Pharmacol 68:84–89

    PubMed  CAS  Google Scholar 

  • Ono K, Lee TS, Kaku T, Arita M (2000) Pharmacological properties of the human cardiac cloned T-type calcium channel. Jpn J Electrocardiol 20:109–112

    Google Scholar 

  • Perchenet L, Benardeau A, Ertel EA (2000) Pharmacological properties of Ca(V)3.2, a low voltage-activated Ca2+ channel cloned from human heart. Naunyn Schmiedebergs Arch Pharmacol 361:590–599

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E (1999) Three for T: molecular analysis of the low voltage-activated calcium channel family. Cell Mol Life Sci 15;56(7–8):660–669

    Article  CAS  Google Scholar 

  • Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900

    Article  PubMed  CAS  Google Scholar 

  • Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15:2995–3012

    PubMed  CAS  Google Scholar 

  • Sakoda R, Kamikawaji Y, Seto K (1992) Synthesis of 1,4-dihydropyridine-5-phosphonates and their calcium-antagonistic and antihypertensive activities: novel calcium-antagonist 2-[benzyl(phenyl)amino]ethyl 5-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yl)-1,4-dihydro-2,6-dim ethyl-4-(3-nitrophenyl)-3-pyridinecarboxylate hydrochloride ethanol (NZ-105) and its crystal structure. Chem Pharm Bull (Tokyo) 40:2362–2369

    CAS  Google Scholar 

  • Snutch TP, Leonard JP, Gilbert MM, Lester HA, Davidson N (1990) Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sci USA 87:3391–3395

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Akaike N (1991) Calcium antagonist effects on low-threshold (T-type) calcium current in rat isolated hippocampal CA1 pyramidal neurons. J Pharmacol Exp Therap 256:169–175

    CAS  Google Scholar 

  • Takahashi K, Wakamori M, Akaike N (1989) Hippocampal CA1 pyramidal cells of rats have four voltage-dependent calcium conductances. Neurosci Lett 104:229–234

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Shigenobu K (2005) Pathophysiological significance of T-type Ca2+ channels: T-type Ca2+ channels and drug development. J Pharmacol Sci 99:214–220

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Komikado C, Shimada H, Takeda K, Namekata I, Kawanishi T, Shigenobu K (2004) The R(−)-enantiomer of efonidipine blocks T-type but not L-type calcium current in guinea pig ventricular myocardium. J Pharmacol Sci 96:499–501

    Article  PubMed  CAS  Google Scholar 

  • Terada K, Ohya Y, Kitamura K, Kuriyama H (1987) Actions of flunarizine, a Ca++ antagonist, on ionic currents in fragmented smooth muscle cells of the rabbit small intestine. J Pharmacol Exp Ther 240:978–983

    PubMed  CAS  Google Scholar 

  • Tytgat J, Nilius B, Vereecke J, Carmeliet E (1988a) The T-type Ca channel in guinea-pig ventricular myocytes is insensitive to isoproterenol. Pflugers Arch 411:704–706

    Article  PubMed  CAS  Google Scholar 

  • Tytgat J, Vereecke J, Carmeliet E (1988b) Differential effects of verapamil and flunarizine on cardiac L-type and T-type Ca channels. Naunyn Schmiedebergs Arch Pharmacol 337:690–692

    Article  PubMed  CAS  Google Scholar 

  • Uneyama C, Uneyama H, Takahashi M, Akaike N (1993) Cytoplasmic pH regulates ATP-induced Ca(2+)-dependent K(+)-current oscillation in rat megakaryocytes. Biochem J 295(Pt 1):317–320

    PubMed  CAS  Google Scholar 

  • Van der Vring JA, Cleophas TJ, Van der Wall EE, Niemeyer MG (1999) T-channel-selective calcium channel blockade: a promising therapeutic possibility, only preliminarily tested so far: a review of published data. T-Channel Calcium Channel Blocker Study Group. Am J Ther 6:229–233

    Article  PubMed  Google Scholar 

  • Viana F, Van den BL, Missiaen L, Vandenberghe W, Droogmans G, Nilius B, Robberecht W (1997) Mibefradil (Ro 40-5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium 22:299–311

    Article  PubMed  CAS  Google Scholar 

  • Yaari Y, Hamon B, Lux HD (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235:680–682

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama T, Fujikura N, Masuda Y, Shikada K, Tanaka S (1996) Effects of efonidipine hydrochloride, a calcium antagonist derived from dihydropyridine, on acute myocardial ischemia in anesthetized open-chest dogs. Nippon Yakurigaku Zasshi 108:307–321

    PubMed  CAS  Google Scholar 

  • Zapater P, Moreno J, Horga JF (1997) Neuroprotection by the novel calcium antagonist PCA50938, nimodipine and flunarizine, in gerbil global brain ischemia. Brain Res 772:57–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Andrew Moorhouse and Dr. Y. Ito for their valuable comments and advice. This work is supported by a grant to N. Akaike from the Project for Promoting Industry-Academic Collaborative Research and the Tokyo Biochemical Research Foundation (TBRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Akaike.

Electronic supplementary material

Below is the link to the electronic supplementary material

Supplementary Figure

Comparison of T-type Ca2+-channel I–V relationships with Ca2+ and Ba2+, as indicated. Holding voltage is −90 mV. The current traces were obtained from the same cell; 2.5 mM Ca2+ and 5 mM Ba2+ gave a difference of about 5 ∼ 10 mV on the voltage at which the peak current was obtained. (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, MC., Kim, CJ., Min, BI. et al. A selective T-type Ca2+ channel blocker R(−) efonidipine. Naunyn-Schmied Arch Pharmacol 377, 411–421 (2008). https://doi.org/10.1007/s00210-007-0239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0239-6

Keywords

Navigation