Skip to main content

Advertisement

Log in

Pharmacological characterization of ergotamine-induced inhibition of the cardioaccelerator sympathetic outflow in pithed rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Ergotamine inhibits the sympathetically-induced tachycardia in pithed rats. The present study identified the pharmacological profile of this response. Male Wistar rats were pithed and prepared to stimulate the preganglionic (C7–T1) cardiac sympathetic outflow. Intravenous continuous infusions of ergotamine dose-dependently inhibited the tachycardic responses to sympathetic stimulation, but not those to exogenous noradrenaline. Using several antagonists, the sympatho-inhibition to ergotamine was: (1) partially blocked by rauwolscine (α2), haloperidol (D1/2-like) or rauwolscine plus GR127935 (5-HT1B/1D); (2) abolished by rauwolscine plus haloperidol; and (3) unaffected by either saline or GR127935. In animals systematically pretreated with haloperidol, this sympatho-inhibition was: (1) unaffected by BRL44408 (α2A), partially antagonized by MK912 (α2C); and (3) abolished by BRL44408 plus MK912. These antagonists failed to modify the sympathetically induced tachycardic responses per se. Thus, the cardiac sympatho-inhibition by ergotamine may be mainly mediated by α2A2C-adrenoceptors, D2-like receptors and, to a lesser extent, by 5-HT1B/1D receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adham N, Kao HT, Schecter LE et al (1993) Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci USA 90:408–412

    Article  PubMed  CAS  Google Scholar 

  • Alexander SPH, Mathie A, Peters JA (2008) Guide to receptors and channels (GRAC), 3rd edn. Br J Pharmacol 153(Suppl. 2):S1–S209

    Article  PubMed  CAS  Google Scholar 

  • Badia A, Moron A, Cuffi L et al (1988) Effects of ergotamine on cardiovascular catecholamine receptors in the pithed rat. Gen Pharmacol 19:475–481

    PubMed  CAS  Google Scholar 

  • Baxter GS, Murphy OE, Blackburn TP (1994) Further characterisation of 5-hydroxytryptamine receptors (putative 5-HT2B) in rat stomach fundus longitudinal muscle. Br J Pharmacol 112:323–331

    PubMed  CAS  Google Scholar 

  • Broadley KJ, Williamson KL, Roach AG (1999) In vivo demonstration of α-adrenoceptor-mediated positive inotropy in pithed rats: evidence that noradrenaline does not stimulate myocardial α-adrenoceptors. J Auton Pharmacol 19:55–63

    Article  PubMed  CAS  Google Scholar 

  • Centurión D, Cobos-Puc LE, Sánchez-López A et al (2006) Receptor mechanisms involved in the cardiac sympatho-inhibition induced by ergotamine. J Pharmacol Sci 101(Suppl I):27

    Google Scholar 

  • Clark BJ, Chu D, Aelig WH (1978) Action on the heart and circulation in ergot alkaloids and related compounds. In: Berde B, Schild HO (eds) Handbook of experimental pharmacology. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Cobos-Puc LE, Villalón CM, Sánchez-López A et al (2007) Pharmacological evidence that α2A- and α2C-adrenoceptors mediate the inhibition of cardioaccelerator sympathetic outflow in pithed rats. Eur J Pharmacol 554:205–211

    Article  PubMed  CAS  Google Scholar 

  • Constantine JW, Weeks RA, McShane WK (1978) Prazosin and presynaptic alpha-receptors in the cardioaccelerator nerve of the dog. Eur J Pharmacol 50:51–60

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JS, MacLaren A, Pollock D (1970) A method of stimulating different segments of the autonomic outflow from the spinal column to various organs in the pithed cat and rat. Br J Pharmacol 40:257–267

    PubMed  CAS  Google Scholar 

  • Glusa E, Roos A (1996) Endothelial 5-HT receptors mediate relaxation of porcine pulmonary arteries in response to ergotamine and dihydroergotamine. Br J Pharmacol 119:330–334

    PubMed  CAS  Google Scholar 

  • Görnemann T, Jähnichen S, Schurad B et al (2008) Pharmacological properties of a wide array of ergolines at functional α1-adrenoceptor subtypes. Naunyn-Schmiedeberg’s Arch Pharmacol 376:321–330

    Article  CAS  Google Scholar 

  • Hietala J (1988) Effects of DA1- and DA2-dopamine antagonists on apomorphine-induced inhibition of peripheral sympathetic neurotransmission. J Auton Pharmacol 8:297–302

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann BB (2001) Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  • Hoyer D (1988) Functional correlates of serotonin 5-HT1 recognition sites. J Recept Res 8:59–81

    PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR et al (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  • Jasper JR, Lesnick JD, Chang LK et al (1998) Ligand efficacy and potency at recombinant α2-adrenergic receptors: agonist-mediated [35S]GTPgammaS binding. Biochem Pharmacol 55:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Kleinman LI, Radford EP (1964) Ventilation standards for small mammals. J Appl Physiol 19:360–362

    PubMed  CAS  Google Scholar 

  • Leysen JE, Gommeren W (1984) In vitro binding profile of drugs used in migraine. In: Amery WK, Van Nueten JM, Wauquier A (eds) The pharmacological basis of migraine therapy. Pitman Publishing Ltd, London

    Google Scholar 

  • Maurer G, Frick W (1984) Elucidation of the structure and receptor binding studies of the major primary, metabolite of dihydroergotamine in man. Eur J Clin Pharmacol 26:463–470

    Article  PubMed  CAS  Google Scholar 

  • Michel MC, Hanft G, Gross G (1994) Functional studies on α1-adrenoceptor subtypes mediating inotropic effects in rat right ventricle. Br J Pharmacol 111:539–46

    PubMed  CAS  Google Scholar 

  • Millan MJ, Brocco M, Rivet JM et al (2000) S18327 (1-[2-[4-(6-fluoro-1, 2-benzisoxazol-3-yl)piperid-1-yl]ethyl]3-phenyl imidazolin-2-one), a novel, potential antipsychotic displaying marked antagonist properties at alpha(1)- and alpha(2)-adrenergic receptors: II. Functional profile and a multiparametric comparison with haloperidol, clozapine, and 11 other antipsychotic agents. J Pharmacol Exp Ther 292:54–66

    PubMed  CAS  Google Scholar 

  • Müller-Schweinitzer E (1984) Pharmacological actions of the main metabolites of dihydroergotamine. Eur J Clin Pharmacol 26:699–705

    Article  PubMed  Google Scholar 

  • Müller-Schweinitzer E, Rosenthaler J (1987) Dihydroergotamine: pharmacokinetics, pharmacodynamics, and mechanism of venoconstrictor action in beagle dogs. J Cardiovasc Pharmacol 9:686–693

    Article  PubMed  Google Scholar 

  • Pauwels PJ (1996) Pharmacological properties of a putative 5-HT1B/1D receptor antagonist GR 127,395. CNS Drug Rev 32:415–428

    Article  Google Scholar 

  • Pauwels PJ, Colpaert FC (1995) The 5-HT1D receptor antagonist GR 127,935 is an agonist at cloned human 5-HT1Dα receptor sites. Neuropharmacology 34:235–237

    Article  PubMed  CAS  Google Scholar 

  • Price GW, Burton MJ, Collin LJ et al (1997) SB-216641 and BRL-15572—compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 356:312–320

    Article  CAS  Google Scholar 

  • Richer C, Lefevre-Borg F, Lechaire J et al (1987) Systemic and regional hemodynamic characterization of α1- and α2-adrenoceptor agonists in pithed rats. J Pharmacol Exp Ther 240:944–953

    PubMed  CAS  Google Scholar 

  • Roquebert J, Grenie B (1986) α2-adrenergic agonist and α1-adrenergic antagonist activity of ergotamine and dihydroergotamine in rats. Arch Int Pharmacodyn Ther 284:30–37

    PubMed  CAS  Google Scholar 

  • Roquebert J, Moran A, Sauvage MF et al (1992) Effects of quinpirole on autonomic nervous control of heart rate in rats. Fundam Clin Pharmacol 6:67–73

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-López A, Centurión D, Vázquez E et al (2003) Pharmacological profile of the 5-HT-induced inhibition of cardioaccelerator sympathetic outflow in pithed rats: correlation with 5-HT1 and putative 5-ht5A/5B receptors. Br J Pharmacol 140:725–735

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-López A, Centurión D, Vázquez E et al (2004) Further characterization of the 5-HT1 receptors mediating cardiac sympatho-inhibition in pithed rats: pharmacological correlation with the 5-HT1B and 5-HT1D subtypes. Naunyn-Schmiedeberg’s Arch Pharmacol 369:220–227

    Article  CAS  Google Scholar 

  • Saxena PR, Cairo-Rawlins WI (1979) Presynaptic inhibition by ergotamine of the responses to cardioaccelerator nerve stimulations in the cat. Eur J Pharmacol 58:305–312

    Article  PubMed  CAS  Google Scholar 

  • Shipley RE, Tilden JH (1947) A pithed rat preparation suitable for assaying pressor substances. Proc Soc Exp Biol Med 64:453–455

    CAS  PubMed  Google Scholar 

  • Silberstein SD, McCrory DC (2003) Ergotamine and dihydroergotamine: history, pharmacology, and efficacy. Headache 43:144–166

    Article  PubMed  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biomedical approach. McGraw-Hill Kogakusha, Tokyo

    Google Scholar 

  • Tfelt-Hansen P, Saxena PR, Dahlof C et al (2000) Ergotamine in the acute treatment of migraine: a review and European consensus. Brain 123:9–18

    Article  PubMed  Google Scholar 

  • Uhlén S, Porter AC, Neubig RR (1994) The novel α2-adrenergic radioligand [3H] MK912 is α2C selective among human α2A, α2B and α2C adrenoceptors. J Pharmacol Exp Ther 271:1558–1565

    PubMed  Google Scholar 

  • Valdivia LF, Centurión D, Arulmani U et al (2004) 5-HT1B receptors, α2A/2C- and, to a lesser extent, α1-adrenoceptors mediate the external carotid vasoconstriction to ergotamine in vagosympathectomised dogs. Naunyn-Schmiedeberg’s Arch Pharmacol 370:46–53

    Article  CAS  Google Scholar 

  • Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    Article  PubMed  CAS  Google Scholar 

  • Villalón CM, Centurión D, Fernández MM et al (1999) 5-Hydroxytryptamine inhibits the tachycardia induced by selective preganglionic sympathetic stimulation in pithed rats. Life Sci 64:1839–1847

    Article  PubMed  Google Scholar 

  • Wainscott DB, Sasso DA, Kursar JD et al (1998) [3H]Rauwolscine: an antagonist radioligand for the cloned human 5-hydroxytryptamine2b (5-HT2B) receptor. Naunyn-Schmiedeberg’s Arch Pharmacol 357:17–24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical assistance of Mr. Arturo Contreras is gratefully acknowledged. We also thank to CONACyT (México) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Centurión.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobos-Puc, L.E., Villalón, C.M., Sánchez-López, A. et al. Pharmacological characterization of ergotamine-induced inhibition of the cardioaccelerator sympathetic outflow in pithed rats. Naunyn-Schmied Arch Pharmacol 379, 137–148 (2009). https://doi.org/10.1007/s00210-008-0339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0339-y

Keywords

Navigation