Skip to main content
Log in

Pressor response to oral tyramine during co-administration with safinamide in healthy volunteers

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the pressor response to oral tyramine during repeated administration of oral safinamide in healthy volunteers. Twelve females and eight males aged 52.7 ± 4.9 years entered the study. An oral tyramine screening test was conducted to select subjects sensitive to the tyramine pressor effect on systolic blood pressure (SBP) in the dose range of 200–400 mg. Safinamide 300 mg was then administered once daily under fasting conditions. Starting on day 5 (safinamide pharmacokinetic steady state), single ascending doses of tyramine were co-administered daily: 50, 100 and 200 mg were administered on days 5, 6 and 7, respectively. Vital parameters were monitored by telemetry. No SBP increase ≥30 mmHg over baseline was observed when tyramine was co-administered with safinamide. Less than one third of the 400 mg responders reported SBP increases between 22 and 27 mmHg, which were below the threshold of 30 mmHg over baseline. SBP increases, as well as time interval to pressor response measured after co-treatment with safinamide and tyramine 200 mg, were not significantly different from those measured after administration of oral tyramine 200 mg alone. Safinamide 300 mg, administered o.d. under fasting conditions, does not change the tyramine pressor response as evaluated at steady state after 6–7 days of treatment as compared with the effect of tyramine administered alone. Safinamide, which inhibits monoamine oxidase (MAO)-B, does not affect oral tyramine metabolism mediated mostly by the intestinal MAO-A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Audebert C, Blin O, Monjanel-Mouterde S, Auquier P, Pedarriosse AM, Dingemanse J, Durand A, Cano JP (1992) Influence of food on the tyramine pressor effect during chronic moclobemide treatment of healthy volunteers. Eur J Clin Pharmacol 43:507–512

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Hertting G, Potter L (1962) Effect of drugs on the uptake and release of 3H-norepinephrine in the rat heart. Nature 194:297

    Article  PubMed  CAS  Google Scholar 

  • Baker GB, LeGatt DF, Coutts RT (1982) A gas chromatographic procedure for quantification of para-tyramine in rat brain. J Neurosci Methods 5:181–188

    Article  PubMed  CAS  Google Scholar 

  • Bieck PR, Antonin KH (1989) Tyramine potentiation during treatment with MAO inhibitors: brofaromine and moclobemide vs irreversible inhibitors. J Neural Transm Suppl 28:21–31

    PubMed  CAS  Google Scholar 

  • Borbe HO, Niebch G, Nickel B (1990) Kinetic evaluation of MAO-B-activity following oral administration of selegiline and desmethyl-selegiline in the rat. J Neural Transm Suppl 32:131–137

    PubMed  CAS  Google Scholar 

  • Borgohain R, Szasz J, Bhatt M, Rossetti S, Lucini V, Anand R (2009) Efficacy and safety of safinamide in patients with Parkinson's disease experiencing motor fluctuations: results of a 6-month Phase III, randomized, double-blind, placebo-controlled study. 13th International Congress of the Movement Disorder Society, Paris, France, 7–11 June 2009. http://www.movementdisorders.org/congress/congress09/late_breaking_abstracts.pdf. Accessed 13 Jan 2009

  • Boulton AA (1978) The tyramines: functionally significant biogenic amines or metabolic accidents? Life Sci 23:659–671

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA, Dyck LE (1974) Biosynthesis and excretion of meta and para tyramine in the rat. Life Sci 14:2497–2506

    Article  PubMed  CAS  Google Scholar 

  • Burn JH, Rand MJ (1958) The action of sympathomimetic amines in animals treated with reserpine. J Physiol 144:314–336

    PubMed  CAS  Google Scholar 

  • Caccia C, Maj R, Calabresi M, Maestroni S, Faravelli L, Curatolo L, Salvati P, Fariello RG (2006) Safinamide: from molecular targets to a new anti-Parkinson drug. Neurology 67:S18–S23

    Article  PubMed  CAS  Google Scholar 

  • Caccia C, Salvati P, Rossetti S, Anand R (2007) Safinamide: beyond MAO-B inhibition. Parkinsonism Relat Disord 13(Suppl 2):S99

    Article  Google Scholar 

  • Cattaneo C, Caccia C, Marzo A, Maj R, Fariello RG (2003) Pressor response to intravenous tyramine in healthy subjects after safinamide, a novel neuroprotectant with selective, reversible monoamine oxidase B inhibition. Clin Neuropharmacol 26:213–217

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8:464–474

    Article  PubMed  CAS  Google Scholar 

  • Chazot PL (2007) Safinamide for the treatment of Parkinson's disease, epilepsy and restless legs syndrome. Curr Opin Investig Drugs 8:570–579

    PubMed  CAS  Google Scholar 

  • Da Prada M, Zurcher G, Wuthrich I, Haefely WE (1988) On tyramine, food, beverages and the reversible MAO inhibitor moclobemide. J Neural Transm Suppl 26:31–56

    PubMed  Google Scholar 

  • Da Prada M, Kettler R, Keller HH, Cesura AM, Richards JG, Saura Marti J, Muggli-Maniglio D, Wyss PC, Kyburz E, Imhof R (1990) From moclobemide to Ro 19–6327 and Ro 41–1049: the development of a new class of reversible, selective MAO-A and MAO-B inhibitors. J Neural Transm Suppl 29:279–292

    PubMed  Google Scholar 

  • De Leonibus E, Manago F, Giordani F, Petrosino F, Lopez S, Oliverio A, Amalric M, Mele A (2009) Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson's disease. Neuropsychopharmacology 34:729–738

    Article  PubMed  Google Scholar 

  • Dingemanse J, Hussain Y, Korn A (1996) Tyramine pharmacodynamics during combined administration of lazabemide and moclobemide. Int J Clin Pharmacol Ther 34:172–177

    PubMed  CAS  Google Scholar 

  • Fariello RG (2007) Safinamide. Neurotherapeutics 4:110–116

    Article  PubMed  CAS  Google Scholar 

  • Finberg JP, Youdim MB (1985) Modification of blood pressure and nictitating membrane response to sympathetic amines by selective monoamine oxidase inhibitors, types A and B, in the cat. Br J Pharmacol 85:541–546

    PubMed  CAS  Google Scholar 

  • Goren T, Adar L, Sasson N, Weiss YM (2010) Clinical pharmacology tyramine challenge study to determine the selectivity of the monoamine oxidase type B (MAO-B) inhibitor rasagiline. J Clin Pharmacol 50:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Haefely W, Huerlimann A, Thoenen H (1963) The responses to tyramine of the normal and denervated nictitating membrane of the cat: analysis of the mechanisms and sites of action. Br J Pharmacol Chemother 21:27–38

    PubMed  CAS  Google Scholar 

  • ICH (2002) Harmonised Tripartite Guidelines for Good Clinical Practice. ICH Topic E6, CPMP/ICH/135/95.

  • Juorio AV, Greenshaw AJ, Boulton AA (1985) Possible pathways for some trace amine-containing neurons. In: Boulton AA, Maitre L, Bieck PR, Rieder P (eds) Neuropharmacology of trace amines. Humana, Clifton, pp 87–99

    Google Scholar 

  • Karoum F (1983) Mass fragmentography in the analysis of biogenic amines: a clinical, physiological and pharmacological evaluation. In: Nagatsu S, Nagatsu T, Pravez H (eds) Methods in biogenic amine research. Elsevier, New York, pp 237–255

    Google Scholar 

  • Karoum F (1985) On the origin of central and peripheral p-hydroxy-phenylacetic acid in rats: a comparison with metabolites of biogenic amines other than p-tyramine. Biogenic Amines 2:269–282

    CAS  Google Scholar 

  • Korn A, Da Prada M, Raffesberg W, Gasic S, Eichler HG (1988) Effect of moclobemide, a new reversible monoamine oxidase inhibitor on absorption and pressor effect of tyramine. J Cardiovasc Pharmacol 11:17–23

    Article  PubMed  CAS  Google Scholar 

  • Lees AJ, Shaw KM, Kohout LJ, Stern GM, Elsworth JD, Sandler M, Youdim MB (1977) Deprenyl in Parkinson's disease. Lancet 2:791–795

    Article  PubMed  CAS  Google Scholar 

  • LeWitt PA (2009) Levodopa therapeutics for Parkinson's disease: new developments. Parkinsonism Relat Disord 15(Suppl 1):S31–S34

    Article  PubMed  Google Scholar 

  • Marzo A, Dal Bo L, Monti NC, Crivelli F, Ismaili S, Caccia C, Cattaneo C, Fariello RG (2004) Pharmacokinetics and pharmacodynamics of safinamide, a neuroprotectant with antiparkinsonian and anticonvulsant activity. Pharmacol Res 50:77–85

    Article  PubMed  CAS  Google Scholar 

  • Patat A, Berlin I, Durrieu G, Armand P, Fitoussi S, Molinier P, Caille P (1995) Pressor effect of oral tyramine during treatment with befloxatone, a new reversible monoamine oxidase-A inhibitor, in healthy subjects. J Clin Pharmacol 35:633–643

    PubMed  CAS  Google Scholar 

  • Pevarello P, Bonsignori A, Dostert P, Heidempergher F, Pinciroli V, Colombo M, McArthur RA, Salvati P, Post C, Fariello RG, Varasi M (1998) Synthesis and anticonvulsant activity of a new class of 2-[(arylalky)amino]alkanamide derivatives. J Med Chem 41:579–590

    Article  PubMed  CAS  Google Scholar 

  • Salvati P, Maj R, Caccia C, Cervini MA, Fornaretto MG, Lamberti E, Pevarello P, Skeen GA, White HS, Wolf HH, Faravelli L, Mazzanti M, Mancinelli E, Varasi M, Fariello RG (1999) Biochemical and electrophysiological studies on the mechanism of action of PNU-151774E, a novel antiepileptic compound. J Pharmacol Exp Ther 288:1151–1159

    PubMed  CAS  Google Scholar 

  • Sandler M, Glover V, Ashford A, Stern GM (1978) Absence of "cheese effect" during deprenyl therapy: some recent studies. J Neural Transm 43:209–215

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2007) Treatment options in the modern management of Parkinson disease. Arch Neurol 64:1083–1088

    Article  PubMed  Google Scholar 

  • Shuemann HJ, Philippu A (1962) Release of catechol amines from isolated medullary granules by sympathomimetic amines. Nature 193:890–891

    Article  PubMed  CAS  Google Scholar 

  • Shulman KI, Walker SE, MacKenzie S, Knowles S (1989) Dietary restriction, tyramine, and the use of monoamine oxidase inhibitors. J Clin Psychopharmacol 9:397–402

    Article  PubMed  CAS  Google Scholar 

  • Stocchi F, Arnold G, Onofrj M, Kwiecinski H, Szczudlik A, Thomas A, Bonuccelli U, Van Dijk A, Cattaneo C, Sala P, Fariello RG (2004) Improvement of motor function in early Parkinson disease by safinamide. Neurology 63:746–748

    PubMed  CAS  Google Scholar 

  • Stocchi F, Borgohain R, Onofrj M, Shapiro A, Bhatt M, Lorenzana P, Rossetti S, Anand R (2007) Safinamide, a new anti-parkinson agent is effective and well-tolerated in early PD patients on a stable dose of single DA-agonist: results of a randomized, international, placebo-controlled Phase II trial. Poster presented at the American Academy of Neurology 59th Annual Meeting, Boston, USA, 1 May 2007

  • Strolin Benedetti MS, Marrari P, Colombo M, Castelli MG, Arand M, Oesch F, Dostert P (1994) The anticonvulsant FCE 26743 is a selective and short-acting MAO-B inhibitor devoid of inducing properties towards cytochrome P450-dependent testosterone hydroxylation in mice and rats. J Pharm Pharmacol 46:814–819

    Article  PubMed  CAS  Google Scholar 

  • Tacker M, McIsaac WM, Creaven PJ (1970) Metabolism of tyramine-1-14 C by the rat. Biochem Pharmacol 19:2763–2773

    Article  PubMed  CAS  Google Scholar 

  • Vaghi F, Maj R, Ukmar G, Lamberti G, McArthur RA, Varasi M, Salvati P, Post C (2007) Neuroprotective effect of PNU-151774E, a new anticonvulsant compound, in the model of global ischaemia in gerbils. Soc Neurosci Abstr 23:545

    Google Scholar 

  • von Euler US, Lishajko F (1960) Release of noradrenaline from adrenergic transmitter granules by tyramine. Experientia 16:376–377

    Article  Google Scholar 

  • Walker SE, Shulman KI, Tailor SA, Gardner D (1996) Tyramine content of previously restricted foods in monoamine oxidase inhibitor diets. J Clin Psychopharmacol 16:383–388

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Yasuhara H (2004) Clinical pharmacology of MAO inhibitors: safety and future. Neurotoxicology 25:215–221

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB (1977) Tyramine in psychiatric disorders. In: Usdin E, Homburg D, Barchas JD (eds) Neuroregulators and psychiatric disorders. Oxford University Press, Oxford, UK, pp 57–67

    Google Scholar 

  • Youdim MB (1990) Monoamine oxidase (MAO)-A but not MAO-B inhibitors potentiate tyramine-induced catecholamine release from PC12 cells. J Neurochem 54:411–414

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Weinstock M (2004) Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyramine potentiation. Neurotoxicology 25:243–250

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Bakhle YS, Ben-Harari RR (1979) Comparison of monoamine oxidase activity in perfused organs in vitro. In: Singer TP, Von Korff RW, Murphy DL (eds) Monoamine oxidase: structure, function and altered functions. Academic, New York, pp 361–377

    Google Scholar 

  • Youdim MB, Gross A, Finberg JP (2001) Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 132:500–506

    Article  PubMed  CAS  Google Scholar 

  • Zar J (1984) Biostatistical analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

This study was supported by Newron Pharmaceuticals S.p.A., Bresso, Italy. The authors acknowledge Kirsteen Munn and Janet Dawson of Complete Medical Communications for professional medical writing support funded by Merck Serono S.A., Geneva, Switzerland—an affiliate of Merck KGaA, Darmstadt, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Francesco Daniele Di Stefano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Stefano, A.F.D., Rusca, A. Pressor response to oral tyramine during co-administration with safinamide in healthy volunteers. Naunyn-Schmiedeberg's Arch Pharmacol 384, 505–515 (2011). https://doi.org/10.1007/s00210-011-0674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0674-2

Keywords

Navigation