Skip to main content
Log in

Characterization of a novel, brain-penetrating CB1 receptor inverse agonist: metabolic profile in diet-induced obese models and aspects of central activity

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Pharmacologic antagonism of cannabinoid 1 receptors (CB1 receptors) in the central nervous system (CNS) suppresses food intake, promotes weight loss, and improves the metabolic profile. Since the CB1 receptor is expressed both in the CNS and in peripheral tissues, therapeutic value may be gained with CB1 receptor inverse agonists acting on receptors in both domains. The present report examines the metabolic and CNS actions of a novel CB1 receptor inverse agonist, compound 64, a 1,5,6-trisubstituted pyrazolopyrimidinone. Compound 64 showed similar or superior binding affinity, in vitro potency, and pharmacokinetic profile compared to rimonabant. Both compounds improved the metabolic profile in diet-induced obese (DIO) rats and obese cynomolgus monkeys. Weight loss tended to be greater in compound 64-treated DIO rats compared to pair-fed counterparts, suggesting that compound 64 may have metabolic effects beyond those elicited by weight loss alone. In the CNS, reversal of agonist-induced hypothermia and hypolocomotion indicated that compound 64 possessed an antagonist activity in vivo. Dosed alone, compound 64 suppressed extinction of conditioned freezing (10 mg/kg) and rapid eye movement (REM) sleep (30 mg/kg), consistent with previous reports for rimonabant, although for REM sleep, compound 64 was greater than threefold less potent than for metabolic effects. Together, these data suggested that (1) impairment of extinction learning and REM sleep suppression are classic, centrally mediated responses to CB1 receptor inverse agonists, and (2) some separation may be achievable between central and peripheral effects with brain-penetrating CB1 receptor inverse agonists while maintaining metabolic efficacy. Furthermore, chronic treatment with compound 64 contributes to evidence that peripheral CB1 receptor blockade may yield beneficial outcomes that exceed those elicited by weight loss alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

β-OHB:

β-hydroxybutyrate

CB1 receptor:

Cannabinoid receptor 1

C max :

Maximal plasma drug concentration

CNS:

Central nervous system

DIO:

Diet-induced obese model

ECS:

Endocannabinoid system

F%:

Oral bioavailability

hCB1 receptor:

Human CB1 receptor

hCB2 receptor:

Human CB2 receptor

IC50 :

Half maximal inhibitory concentration

iv:

Intravenous

NEFA:

Non-esterified free fatty acids

PEG:

Polyethylene glycol

PK:

Pharmacokinetic

PD:

Pharmacodynamic

REM:

Rapid eye movement

RER:

Respiratory exchange ratio

t 1/2 :

Terminal elimination half-life

T2DM:

Type 2 diabetes

Tg:

Triglyceride

TChol:

Total cholesterol

t max :

Time of maximal drug concentration

VDss:

Volume of distribution at steady state

References

  • Aronne LJ, Tonstad S, Moreno M, Gantz I, Erondu N, Suryawanshi S, Molony C, Sieberts S, Nayee J, Meehan AG, Shapiro D, Heymsfield SB, Kaufman KD, Amatruda JM (2010) A clinical trial assessing the safety and efficacy of taranabant, a CB1R inverse agonist, in obese and overweight patients: a high-dose study. Int J Obes (Lond) 34(5):919–935

    Article  CAS  Google Scholar 

  • Banker MJ, Clark TH, Williams JA (2003) Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J Pharm Sci 92:967–974

    Article  PubMed  CAS  Google Scholar 

  • Bellocchio L, Lafenêtre P, Cannich A, Cota D, Puente N, Grandes P, Chaouloff F, Piazza PV, Marsicano G (2010) Bimodal control of stimulated food intake by the endocannabinoid system. Nat Neurosci 13(3):281–283

    Article  PubMed  CAS  Google Scholar 

  • Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G (2004) CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem 11:625–632

    Article  PubMed  Google Scholar 

  • Chaperon F, Thiébot MH (1999) Behavioral effects of cannabinoid agents in animals. Crit Rev Neurobiol 13:243–281

    PubMed  CAS  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Cota D, Marsicano G, Tschöp M, Grübler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thöne-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst AC, Pasquali R, Lutz B, Stalla GK, Pagotto U (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112(3):423–431

    PubMed  CAS  Google Scholar 

  • Cota D, Tschöp MH, Horvath TL, Levine AS (2005) Cannabinoids, opioids and eating behavior: the molecular face of hedonism? Brain Res Rev 51(1):85–107

    Article  PubMed  Google Scholar 

  • Davis M, Ressler K, Rothbaum BO, Richardson R (2006) Effects of d-cycloserine on extinction: translation from preclinical to clinical work. Biol Psychiatry 60:337–343

    Article  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Pediani JD, Canals M, Milasta S, Milligan G (2006) Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J Biol Chem 2281(50):38812–38824

    Article  Google Scholar 

  • European Medicines Agency (2009) Acomplia Product Summary: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000666/WC500021287.pdf

  • Foltin RW, Haney M (2007) Effects of the cannabinoid antagonist SR141716 (rimonabant) and d-amphetamine on palatable food and food pellet intake in non-human primates. Pharmacol Biochem Behav 86:766–773

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Li P, Ouyang X, Gu C, Song Z, Gao J, Han L, Feng S, Tian S, Hu B (2007) Rapid eye movement sleep deprivation selectively impairs recall of fear extinction in hippocampus-independent tasks in rats. Neuroscience 144:1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Gary-Bobo M, Elachouri G, Gallas JF, Janiak P, Marini P, Ravinet-Trillou C, Chabbert M, Cruccioli N, Pfersdorff C, Rogue C, Arnone M, Croci T, Soubrie P, Oury-Donat F, Maffrand JP, Scatton B, Lacheretz F, Le Fur G, Herbert JM, Bensaid M (2007) Rimonabant reduces obesity-associated hepatic steatosis and features of metabolic syndrome in obese Zucker fa/fa rats. Hepatology 46:122–129

    Article  PubMed  CAS  Google Scholar 

  • Haj-Dahmane S, Shen RY (2005) The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling. J Neurosci 25(4):896–905

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC (1995) Pharmacology of cannabinoid receptors. Annu Rev Pharmacol Toxicol 35:607–634

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Acuna-Goycolea C, Li Y, Cheng HM, Obrietan K, van den Pol AN (2007) Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: implications for cannabinoid actions on food intake and cognitive arousal. J Neurosci 27(18):4870–4881

    Article  PubMed  CAS  Google Scholar 

  • Hudson BD, Hébert TE, Kelly ME (2010) Ligand- and heterodimer-directed signaling of the CB(1) cannabinoid receptor. Mol Pharmacol 77(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Jacob W, Yassouridis A, Marsicano G, Monory K, Lutz B, Wotjak CT (2009) Endocannabinoids render exploratory behaviour largely independent of the test aversiveness: role of glutamatergic transmission. Genes Brain Behav 8(7):685–698

    Article  PubMed  CAS  Google Scholar 

  • Janero DR, Makriyannis A (2009) Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin Emerging Drugs 14:43–65

    Article  CAS  Google Scholar 

  • Janiak P, Poirier B, Bidouard J-P, Cadrouvele C, Pierre F, Gouraud L, Barbosa I, Dedio J, Maffrand J-P, Le Fur G, O’Connor S, Herbert J-M (2007) Blockade of cannabinoid CB1 receptors improves renal function, metabolic profile, and increased survival of obese Zucker rats. Kidney Int 72:1345–2357

    Article  PubMed  CAS  Google Scholar 

  • Kunos G (2007) Understanding metabolic homeostasis and imbalance: what is the role of the endocannabinoid system? Am J Med 120:S18–S24

    Article  PubMed  CAS  Google Scholar 

  • Lin LS, Lanza TJ Jr, Jewell JP, Liu P, Shah SK, Qi H, Tong X, Wang J, Xu SS, Fong TM, Shen CP, Lao J, Xiao JC, Shearman LP, Stribling DS, Rosko K, Strack A, Marsh DJ, Feng Y, Kumar S, Samuel K, Yin W, Van der Ploeg LH, Goulet MT, Hagmann WK (2006) Discovery of N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-{[5(trifluoromethyl)pyridin-2-yl]oxy}propanamide (MK-0364), a novel, acyclic cannabinoid-1 receptor inverse agonist for the treatment of obesity. J Med Chem 49(26):7584–7587

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    Article  PubMed  CAS  Google Scholar 

  • Martin B, Compton D, Thomas B, Prescott W, Little P, Razdan R, Johnson M, Melvin L, Mechoulam R, Ward S (1991) Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs. Pharmacol Biochem Behav 40:471–478

    Article  PubMed  CAS  Google Scholar 

  • Matias I, Di Marzo V (2007) Endocannabinoids and the control of energy balance. Trends Endocrinol Metab 18(1):27–37

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  PubMed  CAS  Google Scholar 

  • Moreira FA, Lutz B (2008) The endocannabinoid system: emotion, learning and addiction. Addict Biol 13(2):196–212

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Martínez-vargas M, Murillo-rodríguez E, Landa A, Méndez-díaz M, Prospéro-garcía O (2003) Potential role of the cannabinoid receptor CB1 in rapid eye movement sleep rebound. Neuroscience 120:855–859

    Article  PubMed  CAS  Google Scholar 

  • Niyuhire F, Varvel SA, Thorpe AJ, Stokes RJ, Wiley JL, Lichtman AH (2007) The disruptive effects of the CB1 receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacol 191:223–231

    Article  CAS  Google Scholar 

  • Pavón FJ, Serrano A, Pérez-Valero V, Jagerovic N, Hernández-Folgado L, Bermúdez-Silva FJ, Macías M, Goya P, de Fonseca FR (2008) Central versus peripheral antagonism of cannabinoid CB1 receptor in obesity: effects of LH-21, a peripherally acting neutral cannabinoid receptor antagonist, in Zucker rats. J Neuroendocrinol Suppl 1:116–123

    Article  Google Scholar 

  • Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J, RIO-North America Study Group (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775

    Article  PubMed  CAS  Google Scholar 

  • Proietto J, Rissanen A, Harp JB, Erondu N, Yu Q, Suryawanshi S, Jones ME, Johnson-Levonas AO, Heymsfield SB, Kaufman KD, Amatruda JM (2010) A clinical trial assessing the safety and efficacy of the CB1R inverse agonist taranabant in obese and overweight patients: low-dose study. Int J Obes (Lond) 34(8):1243–1254

    Article  CAS  Google Scholar 

  • Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, Maffrand JP, Soubrie P (2003) Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Reg Integr Comp Physiol 284:R345–R353

    Google Scholar 

  • Rechtschaffen A, Bergmann BM, Gilliland MA, Bauer K (1999) Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep 22:11–31

    PubMed  CAS  Google Scholar 

  • Rodgers RJ, Haller I, Halasz J, Mikics E (2003) ‘One trial sensitization’ to the anxiolytic-like effects of cannabinoid receptor antagonist SR141 716A in the mouse elevated plus-maze. Eur J Neurosci 17:1279–1286

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8(3):171–181

    Article  PubMed  CAS  Google Scholar 

  • Santucci V, Storme JJ, Soubrié P, Le Fur G (1996) Arousal-enhancing properties of the CB1 cannabinoid receptor antagonist SR 141716A in rats as assessed by electroencephalographic spectral and sleep-waking cycle analysis. Life Sci 58:103–110

    Article  Google Scholar 

  • Silvestri AJ (2005) REM sleep deprivation affects extinction of cued but not contextual fear conditioning. Physiol Behav 84:343–349

    Article  PubMed  CAS  Google Scholar 

  • Simiand J, Keane M, Keane PE, Soubrié P (1998) SR 141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav Pharmacol 9:179–181

    PubMed  CAS  Google Scholar 

  • Tam J, Vemuri VK, Liu J, Bátkai S, Mukhopadhyay B, Godlewski G, Osei-Hyiaman D, Ohnuma S, Ambudkar SV, Pickel J, Makriyannis A, Kunos G (2010) Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 120(8):2953–2966

    Article  PubMed  CAS  Google Scholar 

  • Thomas BF (2009) Neuroanatomical basis for therapeutic applications of cannabinoid receptor 1 antagonists. Drug Devel Res 70:527–554

    Article  CAS  Google Scholar 

  • Van Gaal LF, Scheen AJ, Rissanen AM, Rössner S, Hanotin C, Ziegler O (2008) Long-term effect of CB1 blockade with rimonabant on cardiometabolic risk factors: two year results from the RIO-Europe Study. Eur Heart J 29:1761–1771

    Article  PubMed  Google Scholar 

  • Wadden TA, Fujioka K, Toubro S, Gantz I, E Erondu N, Chen M, Suryawanshi S, Carofano W, Johnson-Levonas AO, R Shapiro D, Kaufman KD, Heymsfield SB, Amatruda JM (2010) A randomized trial of lifestyle modification and taranabant for maintaining weight loss achieved with a low-calorie diet. Obesity (Silver Spring) 18(12):2301–2310

    Article  Google Scholar 

  • Westlake T, Howlett A, Bonner T, Matsuda L, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63:637–652

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stephen Marmor, Diana Dubiel, Hayley Crowe, and Korina Veenstra for help with plasma analytical work; Weijia Zheng for help with formulation work; Michael Hayes and Albert Enz for compound bioanalytical work; Liladhar Waykole for help with compound manufacturing. We gratefully acknowledge the expert contributions of Xianglin Ren, Anton Neuenschwander, Charlotte Huber, Margrit Zingg, Tove Tuntland, Mark Perrone, Jeremy Caldwell, Donald S. Karanewsky, Kunyong Yang, Alan Chu, Cara Cuc T. Ngo, and David Huang for advice and assistance with study design, execution, and data evaluation. We gratefully thank Prof. Daniel Hoyer for critical reading of the manuscript and associated advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura H. Jacobson.

Additional information

Laura H. Jacobson and S. Renee Commerford contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, L.H., Commerford, S.R., Gerber, S.P. et al. Characterization of a novel, brain-penetrating CB1 receptor inverse agonist: metabolic profile in diet-induced obese models and aspects of central activity. Naunyn-Schmiedeberg's Arch Pharmacol 384, 565–581 (2011). https://doi.org/10.1007/s00210-011-0686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0686-y

Keywords

Navigation