Skip to main content
Log in

Effects of aripiprazole on caffeine-induced hyperlocomotion and neural activation in the striatum

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine D2 receptors. In addition to its antipsychotic activity, this compound blocks the effects of some psychostimulant drugs. It has not been verified, however, if aripiprazole interferes with the effects of caffeine. Hence, this study tested the hypothesis that aripiprazole prevents caffeine-induced hyperlocomotion and investigated the effects of these drugs on neural activity in the striatum. Male Swiss mice received injections of vehicle or antipsychotic drugs followed by vehicle or caffeine. Locomotion was analyzed in a circular arena and c-Fos protein expression was quantified in the dorsolateral, dorsomedial, and ventrolateral striatum, and in the core and shell regions of nucleus accumbens. Aripiprazole (0.1, 1, and 10 mg/kg) prevented caffeine (10 mg/kg)-induced hyperlocomotion at doses that do not change basal locomotion. Haloperidol (0.01, 0.03, and 0.1 mg/kg) also decreased caffeine-induced hyperlocomotion at all doses, although at the two higher doses, this compound reduced basal locomotion. Immunohistochemistry analysis showed that aripiprazole increases c-Fos protein expression in all regions studied, whereas caffeine did not alter c-Fos protein expression. Combined treatment of aripiprazole and caffeine resulted in a decrease in the number of c-Fos positive cells as compared to the group receiving aripiprazole alone. In conclusion, aripiprazole prevents caffeine-induced hyperlocomotion and increases neural activation in the striatum. This latter effect is reduced by subsequent administration of caffeine. These results advance our understanding on the pharmacological profile of aripiprazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abekawa T, Ito K, Nakagawa S, Nakato Y, Koyama T (2011) Effects of aripiprazole and haloperidol on progression to schizophrenia-like behavioural abnormalities and apoptosis in rodents. Schizophr Res 125:77–87

    Article  PubMed  Google Scholar 

  • Almeida-Santos AF, Gobira PH, Souza DP, Ferreira RC, Romero TR, Duarte ID, Aguiar DC, Moreira FA (2014) The antipsychotic aripiprazole selectively prevents the stimulant and rewarding effects of morphine in mice. Eur J Pharmacol 742:139–144

    Article  PubMed  CAS  Google Scholar 

  • Beijamini V, Guimarães FS (2006) c-Fos expression increase in NADPH-diaphorase positive neurons after exposure to a live cat. Behav Brain Res 170:52–61

  • Bennett HJ, Semba K (1998) Immunohistochemical localization of caffeine-induced c-Fos protein expression in the rat brain. J Comp Neurol 401:89–108

    Article  PubMed  CAS  Google Scholar 

  • Bergman J (2008) Medications for stimulant abuse: agonist-based strategies and preclinical evaluation of the mixed-action D2 partial agonist aripiprazole (Abilify). Exp Clin Psychopharm 16:475–483

    Article  CAS  Google Scholar 

  • Boettger S, Jenewein J, Breitbart W (2014) Haloperidol, risperidone, olanzapine and aripiprazole in the management of delirium: a comparison of efficacy, safety, and side effects. Palliat Support Care 13:1079–1085

    Article  PubMed  Google Scholar 

  • Carey RJ, De Palma G, Damianopoulos E (2002) 5-HT1A agonist/antagonist modification of cocaine stimulant effects: implications for cocaine mechanisms. Behav Brain Res 132:37–46

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Fredholm BB (1998) Caffeine—an atypical drug of dependence. Drug Alcohol Depen 51:199–206

    Article  CAS  Google Scholar 

  • De Luca MA, Bassareo V, Bauer A, Di Chiara G (2007) Caffeine and accumbens shell dopamine. J Neurochem 103:157–163

    PubMed  Google Scholar 

  • Dubroqua S, Yee BK, Singer P (2014) Sensorimotor gating is disrupted by acute but not chronic systemic exposure to caffeine in mice. Psychopharmacology 231:4087–4098

    Article  PubMed  CAS  Google Scholar 

  • El Yacoubi M, Ledent C, Menard JF, Parmentier M, Costentin J, Vaugeois JM (2000) The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A2A receptors. Brit J Pharmacol 129:1465–1473

    Article  Google Scholar 

  • Estler CJ (1973) Effect of alfa- and beta-adrenergic blocking agents and para-chlorophenylalanine on morphine and caffeine-stimulated locomotor activity of mice. Psychopharmacologia 28:261–268

    Article  PubMed  CAS  Google Scholar 

  • Ferre S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  PubMed  CAS  Google Scholar 

  • Ferre S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  PubMed  CAS  Google Scholar 

  • Garrett BE, Holtzman SG (1994) D1 and D2 dopamine receptor antagonists block caffeine-induced stimulation of locomotor activity in rats. Pharmacol Biochem Be 47:89–94

    Article  CAS  Google Scholar 

  • Gobira PH, Ropke J, Aguiar DC, Crippa JA, Moreira FA (2013) Animal models for predicting the efficacy and side effects of antipsychotic drugs. Rev Bras Psiquiatr 35(Suppl 2):S132–S139

    Article  PubMed  Google Scholar 

  • Jerlhag E (2008) The antipsychotic aripiprazole antagonizes the ethanol- and amphetamine-induced locomotor stimulation in mice. Alcohol 42:123–127

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Tottori K, Uwahodo Y, Hirose T, Miwa T, Oshiro Y, Morita S (1995) 7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-quinolinon e (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329–336

    PubMed  CAS  Google Scholar 

  • Konradi C, Heckers S (1995) Haloperidol-induced Fos expression in striatum is dependent upon transcription factor cyclic AMP response element binding protein. Neuroscience 65:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Leite JV, Guimaraes FS, Moreira FA (2008) Aripiprazole, an atypical antipsychotic, prevents the motor hyperactivity induced by psychotomimetics and psychostimulants in mice. Eur J Pharmacol 578:222–227

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Cruz L, Pardo M, Salamone JD, Correa M (2014) Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: Studies using medium to high doses in animal models. Behav Brain Res 270:213–222

    Article  PubMed  CAS  Google Scholar 

  • Mailman RB, Murthy V (2010) Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Design 16:488–501

    Article  CAS  Google Scholar 

  • Marinho EA, Oliveira-Lima AJ, Wuo-Silva R, Santos R, Baldaia MA, Hollais AW, Longo BM, Berro LF, Frussa-Filho R (2014) Selective action of an atypical neuroleptic on the mechanisms related to the development of cocaine addiction: a pre-clinical behavioural study. Int J Neuropsychopharmacol 17:613–623

    Article  PubMed  CAS  Google Scholar 

  • Moreira FA, Dalley JW (2015) Dopamine receptor partial agonists and addiction. Eur J Pharmacol 752:112–115

    Article  PubMed  CAS  Google Scholar 

  • Nakai S, Hirose T, Uwahodo Y, Imaoka T, Okazaki H, Miwa T, Nakai M, Yamada S, Dunn B, Burris KD, Molinoff PB, Tottori K, Altar CA, Kikuchi T (2003) Diminished catalepsy and dopamine metabolism distinguish aripiprazole from haloperidol or risperidone. Eur J Pharmacol 472:89–97

    Article  PubMed  CAS  Google Scholar 

  • Natesan S, Reckless GE, Nobrega JN, Fletcher PJ, Kapur S (2006) Dissociation between in vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology 31:1854–1863

    Article  PubMed  CAS  Google Scholar 

  • Natesan S, Reckless GE, Barlow KB, Nobrega JN, Kapur S (2011) Partial agonists in schizophrenia—why some work and others do not: insights from preclinical animal models. Int J Neuropsychopharmacol 14:1165–1178

    Article  PubMed  Google Scholar 

  • Oka T, Hamamura T, Lee Y, Miyata S, Habara T, Endo S, Taoka H, Kuroda S (2004) Atypical properties of several classes of antipsychotic drugs on the basis of differential induction of Fos-like immunoreactivity in the rat brain. Life Sci 76:225–237

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2012) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

  • Pollack AE, Fink JS (1995) Adenosine antagonists potentiate D2 dopamine-dependent activation of Fos in the striatopallidal pathway. Neuroscience 68:721–728

    Article  PubMed  CAS  Google Scholar 

  • Quarta D, Ferré S, Solinas M, You Z-B, Hockemeyer J, Popoli P, Goldberg SR (2004) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 88:1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Robertson GS, Fibiger HC (1992) Neuroleptics increase c-Fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46:315–328

    Article  PubMed  CAS  Google Scholar 

  • Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411

    Article  PubMed  CAS  Google Scholar 

  • Steeds H, Carhart-Harris RL, Stone JM (2015) Drug models of schizophrenia. Ther Adv Psychopharmacol 5:43–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stip E, Tourjman V (2010) Aripiprazole in schizophrenia and schizoaffective disorder: a review. Clin Ther 32(Suppl 1):S3–S20

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Strom A, Johansson B, Fredholm BB (1995) Increased expression of c-jun, junB, AP-1, and preproenkephalin mRNA in rat striatum following a single injection of caffeine. J Neurosci 3583–3593

  • Viana TG, Almeida-Santos AF, Aguiar DC, Moreira FA (2013) Effects of aripiprazole, an atypical antipsychotic, on the motor alterations induced by acute ethanol administration in mice. Basic Clin Pharmacol Toxicol 112:319–324

    Article  PubMed  CAS  Google Scholar 

  • Wen XJ, Wang LM, Liu ZL, Huang A, Liu YY, Hu JY (2014) Meta-analysis on the efficacy and tolerability of the augmentation of antidepressants with atypical antipsychotics in patients with major depressive disorder. Braz J Med Biol Res 47:605–616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q, Yu YP, Ye YL, Zhang JT, Zhang WP, Wei EQ (2011) Spatiotemporal properties of locomotor activity after administration of central nervous stimulants and sedatives in mice. Pharmacol Biochem Be 97:577–585

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from FAPEMIG (APQ-01728-13).

FAM is a recipient of a CNPq productivity fellowship (level 2). The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício A. Moreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, L.A., Viana, T.G., Silveira, V.T. et al. Effects of aripiprazole on caffeine-induced hyperlocomotion and neural activation in the striatum. Naunyn-Schmiedeberg's Arch Pharmacol 389, 11–16 (2016). https://doi.org/10.1007/s00210-015-1170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1170-x

Keywords

Navigation