Skip to main content
Log in

The actions of relaxin family peptides on signal transduction pathways activated by the relaxin family peptide receptor RXFP4

  • Short Communication
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The relaxin family peptide receptor 4 (RXFP4) is a G protein-coupled receptor (GPCR) expressed in the colorectum with emerging roles in metabolism and appetite regulation. It is activated by its cognate ligand insulin-like peptide 5 (INSL5) that is expressed in enteroendocrine L cells in the gut. Whether other evolutionarily related peptides such as relaxin-2, relaxin-3, or INSL3 activate RXFP4 signal transduction mechanisms with a pattern similar to or distinct from INSL5 is still unclear. In this study, we compare the signaling pathways activated by various relaxin family peptides to INSL5. We found that, like INSL5, relaxin-3 activated ERK1/2, p38MAPK, Akt, and S6RP phosphorylations leading to increased cell proliferation and also caused GRK and β-arrestin-mediated receptor internalization. Interestingly, relaxin-3 was slightly more potent than INSL5 in ERK1/2 and Akt phosphorylations, but both peptides were almost equipotent in adenylyl cyclase inhibition, S6RP phosphorylation, and cell proliferation. In addition, relaxin-3 showed greater efficacy only in Akt phosphorylation but not in the other pathways investigated. In contrast, no signaling activity or receptor internalization mechanisms were observed following relaxin-2 and INSL3. In conclusion, relaxin-3 is a high-efficacy agonist at RXFP4 with a comparable signal transduction profile to INSL5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Ang SY, Hutchinson DS, Patil N, Evans BA, Bathgate RA, Halls ML et al (2016) Signal transduction pathways activated by insulin-like peptide 5 at the relaxin family peptide RXFP4 receptor. Br J Pharmacol. doi:10.1111/bph.13522

    PubMed  Google Scholar 

  • Bathgate RA, Samuel CS, Burazin TC, Layfield S, Claasz AA, Reytomas IG et al (2002) Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene: novel members of the relaxin peptide family. J Biol Chem 277:1148–1157

    Article  CAS  PubMed  Google Scholar 

  • Bathgate RA, Lin F, Hanson NF, Otvos L Jr, Guidolin A, Giannakis C et al (2006) Relaxin-3: improved synthesis strategy and demonstration of its high-affinity interaction with the relaxin receptor LGR7 both in vitro and in vivo. Biochemistry 45:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ (2013) Relaxin family peptides and their receptors. Physiol Rev 93:405–480

    Article  CAS  PubMed  Google Scholar 

  • Belgi A, Bathgate RA, Kocan M, Patil N, Zhang S, Tregear GW et al (2013a) Minimum active structure of insulin-like peptide 5. J Med Chem 56:9509–9516

    Article  CAS  PubMed  Google Scholar 

  • Belgi A, Bathgate RA, Tregear GW, Wade JD, Hossain MA (2013b) Preliminary structure–function relationship studies on insulin-like peptide 5. Int J Pept Res Ther 19:71–79

    Article  CAS  Google Scholar 

  • Fu P, Layfield S, Ferraro T, Tomiyama H, Hutson J, Otvos L Jr et al (2004) Synthesis, conformation, receptor binding and biological activities of monobiotinylated human insulin-like peptide 3. J Peptide Res 63:91–98

    Article  CAS  Google Scholar 

  • Grosse J, Heffron H, Burling K, Hossain MA, Habib AM, Rogers GJ et al (2014) Insulin-like peptide 5 is an orexigenic gastrointestinal hormone. Proc Natl Acad Sci U S A 11:11133–11138

    Article  Google Scholar 

  • Halls ML, Bond CP, Sudo S, Kumagai J, Ferraro T, Layfield S, Bathgate RA, Summers RJ (2005) Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J Pharmacol Exp Ther 313:677--687

  • Halls ML, Bathgate RA, Summers RJ (2007) Comparison of signaling pathways activated by the relaxin family peptide receptors, RXFP1 and RXFP2, using reporter genes. J Pharmacol Exp Ther 320:281--290

  • Halls ML, Bathgate RA, Sutton SW, Dschietzig TB, Summers RJ (2015) International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 67:389–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haugaard-Jonsson LM, Hossain MA, Daly NL, Craik DJ, Wade JD, Rosengren KJ (2009) Structure of human insulin-like peptide 5 and characterization of conserved hydrogen bonds and electrostatic interactions within the relaxin framework. Biochem J 419:619–627

    Article  PubMed  Google Scholar 

  • Hojo K, Hossain MA, Tailhades J, Shabanpoor F, Wong LL, Ong-Palsson et al (2016) Development of a single-chain peptide agonist of the relaxin-3 receptor using hydrocarbon stapling. J Med Chem 59:7445–7456

    Article  CAS  PubMed  Google Scholar 

  • Jensen DD, Godfrey CB, Niklas C, Canals M, Kocan M, Poole DP et al (2013) The bile acid receptor TGR5 does not interact with β-arrestins or traffic to endosomes but transmits sustained signals from plasma membrane rafts. J Biol Chem 288:22942–22960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocan M, See HB, Seeber RM, Eidne KA, Pfleger KD (2008) Demonstration of improvements to the bioluminescence resonance energy transfer (BRET) technology for the monitoring of G protein–coupled receptors in live cells. J Biomol Screen 13:888–898

    Article  CAS  PubMed  Google Scholar 

  • Kocan M, Sarwar M, Hossain MA, Wade JD, Summers RJ (2014) Signalling profiles of H3 relaxin, H2 relaxin and R3(BΔ23-27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3). Br J Pharmacol 171:2827–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuei C, Sutton S, Bonaventure P, Pudiak C, Shelton J, Zhu J et al (2007) R3(BDelta23 27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and in vivo characterization. J Biol Chem 282:25425–25435

    Article  CAS  PubMed  Google Scholar 

  • Kumagai J, Sheau YH, Matsumi H, Roh JS, Fu P, Wade JD et al (2002) INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem 277:31283–31286

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Chen J, Sutton S, Roland B, Kuei C, Farmer N et al (2003) Identification of relaxin-3/INSL7 as a ligand for GPCR142. J Biol Chem 278:50765–50770

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Kuei C, Sutton S, Chen J, Bonaventure P, Wu J et al (2005) INSL5 is a high affinity specific agonist for GPCR142 (GPR100). J Biol Chem 280:292–300

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Li T, Zhu Y, Dai Y, Zhao J, Guo Z et al (2015) The insulinotrophic effect of insulin-like peptide 5 in vitro and in vivo. Biochem J 466:467–473

    Article  CAS  PubMed  Google Scholar 

  • Mashima H, Ohno H, Yamada Y, Sakai T, Ohnishi H (2013) INSL5 may be a unique marker of colorectal endocrine cells and neuroendocrine tumors. Biochem Biophys Res Commun 432:586–592

    Article  CAS  PubMed  Google Scholar 

  • Patil NA, Hughes RA, Rosengren KJ, Kocan M, Ang SY, Tailhades J et al (2016) Engineering of a novel simplified human insulin-like peptide 5 agonist. J Med Chem 59:2118–2125

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Shen P, Banerjee A, Bonaventure P, Ma S, Bathgate RA et al (2010) Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol 518:4016–4045

    Article  CAS  PubMed  Google Scholar 

  • Thanasupawat T, Hammje K, Adham I, Ghia J, Del Bigio MR, Krcek J et al (2013) INSL5 is a novel marker for human enteroendocrine cells of the large intestine and neuroendocrine tumours. Oncol Rep 29:149–154

    PubMed  Google Scholar 

  • Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  Google Scholar 

  • van der Westhuizen ET, Christopoulos A, Sexton PM, Wade JD, Summers RJ (2010) H2 relaxin is a biased ligand relative to H3 relaxin at the relaxin family peptide receptor 3 (RXFP3). Mol Pharmacol 77:759–772

    Article  PubMed  Google Scholar 

  • Wang X, Guo Y, Shao X, Liu Y, Xu Z, Guo Z (2014a) Identification of important residues of insulin-like peptide 5 and its receptor RXFP4 for ligand-receptor interactions. Arch Biochem Biophys 558:127–132

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Guo Y, Zhang W, Shao X, Liu Y, Xu Z et al (2014b) The electrostatic interactions of relaxin-3 with receptor RXFP4 and the influence of its B-chain C-terminal conformation. FEBS J 281:2927–2936

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Kuei C, Sutton S, Kamme F, Yu J, Bonaventure P et al (2008) Identification of the domains in RXFP4 (GPCR142) responsible for the high affinity binding and agonistic activity of INSL5 at RXFP4 compared to RXFP3 (GPCR135). Eur J Pharmacol 590:43–52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by an Australian National Health and Medical Research Council (NHMRC) program grant (1055134; RJS). DSH is supported by a NHMRC Career Development Fellowship (545952). SYA is supported by a Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Postgraduate Scholarship. Research at the Florey was supported by an ARC Linkage grant to RADB and MAH (LP120100654) and by the Victorian Government Operational Infrastructure Support Program. RADB is supported by an NHMRC Research Fellowship (1042650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Summers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang, S.Y., Hutchinson, D.S., Evans, B.A. et al. The actions of relaxin family peptides on signal transduction pathways activated by the relaxin family peptide receptor RXFP4. Naunyn-Schmiedeberg's Arch Pharmacol 390, 105–111 (2017). https://doi.org/10.1007/s00210-016-1321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1321-8

Keywords

Navigation