Skip to main content
Log in

Surface Crouzeix–Raviart element for the Laplace–Beltrami equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the nonconforming finite element discretization of geometric partial differential equations. We construct a surface Crouzeix–Raviart element on the linear approximated surface, analogous to a flat surface. The optimal convergence theory for the new nonconforming surface finite element method is developed even though the geometric error exists. By taking an intrinsic viewpoint of manifolds, we introduce a new superconvergent gradient recovery method for the surface Crouzeix–Raviart element using only the information of discretized surface. The potential of serving as an asymptotically exact a posteriori error estimator is also exploited. A series of benchmark numerical examples are presented to validate the theoretical results and numerically demonstrate the superconvergence of the gradient recovery method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  2. Antonietti, P.F., Dedner, A., Madhavan, P., Stangalino, S., Stinner, B., Verani, M.: High order discontinuous Galerkin methods for elliptic problems on surfaces. SIAM J. Numer. Anal. 53, 1145–1171 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Arroyo, M., DeSimone, A.: Relaxation dynamics of fluid membranes. Phys. Rev. E 79, 031915 (2009)

    MathSciNet  Google Scholar 

  4. Aubin, T.: Best constants in the Sobolev imbedding theorem: the Yamabe problem. In: Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 173–184. Princeton Univ. Press, Princeton (1982)

    Google Scholar 

  5. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. The Clarendon Press, New York (2001)

    MATH  Google Scholar 

  6. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical computations of the dynamics of fluidic membranes and vesicles. Phys. Rev. E 92, 052704 (2015)

    Google Scholar 

  7. Barrett, J.W., Garcke, H., Nürnberg, R.: A stable numerical method for the dynamics of fluidic membranes. Numerische Mathematik 134, 783–822 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Bonito, A., Cascón, J.M., Mekchay, K., Morin, P., Nochetto, R.H.: High-order AFEM for the Laplace–Beltrami operator: convergence rates. Found. Comput. Math. 16, 1473–1539 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bonito, A., Cascón, J.M., Morin, P., Nochetto, R.H.: AFEM for geometric PDE: the Laplace-Beltrami operator. In: Brezzi, F., Colli Franzone, P., Gianazza, U., Gilardi, G. (eds.) Analysis and Numerics of Partial Differential Equations. Springer INdAM Series, vol. 4, pp. 257–306. Springer, Milan (2013)

    Google Scholar 

  10. Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007). Theory, fast solvers, and applications in elasticity theory. Translated from the German by Larry L. Schumaker

  11. Brenner, S.C.: Forty years of the Crouzeix–Raviart element. Numer. Methods Partial Differ. Equ. 31, 367–396 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    MATH  Google Scholar 

  13. Brenner, S.C., Sung, L.-Y.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    MATH  Google Scholar 

  15. Burman, E., Hansbo, P., Larson, M.G., Larsson, K., Massing, A.: Finite element approximation of the Laplace-Beltrami operator on a surface with boundary. Numer. Math. 141(1), 141–172 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM. Math. Comput. 71, 945–969 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Chen, L.: Short implementation of bisection in MATLAB. In: Jorgensen, P., Shen, X., Shu, C.-W., Yan, N. (eds.) Recent Advances in Computational Sciences, pp. 318–332. World Sci. Publ, Hackensack (2008)

    Google Scholar 

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]

    MATH  Google Scholar 

  19. Cockburn, B., Demlow, A.: Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces. Math. Comput. 85, 2609–2638 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7, 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  21. Dedner, A., Madhavan, P.: Adaptive discontinuous Galerkin methods on surfaces. Numer. Math. 132, 369–398 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Dedner, A., Madhavan, P., Stinner, B.: Analysis of the discontinuous Galerkin method for elliptic problems on surfaces. IMA J. Numer. Anal. 33, 952–973 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47, 805–827 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Demlow, A., Dziuk, G.: An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45, 421–442 (2007). (electronic)

    MathSciNet  MATH  Google Scholar 

  25. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston (1992). Translated from the second Portuguese edition by Francis Flaherty

    MATH  Google Scholar 

  26. Dong, G., Guo, H.: Parametric polynomial preserving recovery on manifolds (2017). arXiv:1703.06509 [math.NA]

  27. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988)

    Google Scholar 

  29. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Elcott, S., Tong, Y., Kanso, E., Schröder, P., Desbrun, M.: Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 4 (2007)

    Google Scholar 

  31. Fries, T.-P.: Higher-order surface fem for incompressible Navier–Stokes flows on manifolds. Int. J. Numer. Methods Fluids 88, 55–78 (2018)

    MathSciNet  Google Scholar 

  32. Grande, J., Reusken, A.: A higher order finite element method for partial differential equations on surfaces. SIAM J. Numer. Anal. 54, 388–414 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Guo, H., Zhang, Z.: Gradient recovery for the Crouzeix–Raviart element. J. Sci. Comput. 64, 456–476 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Larsson, K., Larson, M.G.: A continuous/discontinuous Galerkin method and a priori error estimates for the biharmonic problem on surfaces. Math. Comput. 86, 2613–2649 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Lee, J.M.: Riemannian Manifolds. Graduate Texts in Mathematics, vol. 176. Springer, New York (1997). An introduction to curvature

    Google Scholar 

  36. Mekchay, K., Morin, P., Nochetto, R.H.: AFEM for the Laplace–Beltrami operator on graphs: design and conditional contraction property. Math. Comput. 80, 625–648 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Mullen, P., Crane, K., Pavlov, D., Tong, Y., Desbrun, M.: Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 38:1–38:8 (2009)

    Google Scholar 

  38. Naga, A., Zhang, Z.: The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete Contin. Dyn. Syst. Ser. B 5, 769–798 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Olshanskii, M.A., Quaini, A., Reusken, A., Yushutin, V.: A finite element method for the surface stokes problem (2018). arXiv:1801.06589 [math.NA]

  40. Olshanskii, M.A., Reusken, A., Grande, J.: A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47, 3339–3358 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Olshanskii, M.A., Safin, D.: A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces. Math. Comput. 85, 1549–1570 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Padberg-Gehle, K., Reuther, S., Praetorius, S., Voigt, A.: Transfer operator-based extraction of coherent features on surfaces. In: Carr, H., Garth, C., Weinkauf, T. (eds.) Topological Methods in Data Analysis and Visualization IV, pp. 283–297. Springer, Cham (2017)

    Google Scholar 

  43. Reusken, A.: Stream function formulation of surface stokes equations. IMA J. Numer. Anal. dry062 (2018) https://doi.org/10.1093/imanum/dry062

    MathSciNet  Google Scholar 

  44. Reuther, S., Voigt, A.: Solving the incompressible surface Navier–Stokes equation by surface finite elements. Phys. Fluids 30, 012107 (2018)

    Google Scholar 

  45. Rineau, L., Yvinec, M.: 3D surface mesh generation. In: CGAL User and Reference Manual, 4.9 ed. CGAL Editorial Board (2016)

  46. Sasaki, E., Takehiro, S., Yamada, M.: Bifurcation structure of two-dimensional viscous zonal flows on a rotating sphere. J. Fluid Mech. 774, 224–244 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Wei, H., Chen, L., Huang, Y.: Superconvergence and gradient recovery of linear finite elements for the Laplace–Beltrami operator on general surfaces. SIAM J. Numer. Anal. 48, 1920–1943 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987). Translated from the German by C. B. Thomas and M. J. Thomas

  49. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005). (electronic)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by Andrew Sisson Fund of the University of Melbourne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H. Surface Crouzeix–Raviart element for the Laplace–Beltrami equation. Numer. Math. 144, 527–551 (2020). https://doi.org/10.1007/s00211-019-01099-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01099-7

Mathematics Subject Classification

Navigation