Skip to main content
Log in

Paroxetine combined with a 5-HT1A receptor antagonist reversed reward deficits observed during amphetamine withdrawal in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

“Diminished interest or pleasure” in rewarding stimuli is an affective symptom of amphetamine withdrawal and a core symptom of depression. An operational measure of this symptom is elevation of brain stimulation reward thresholds during drug withdrawal. Data indicated that increasing serotonin neurotransmission by co-administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine and the serotonin-1A receptor antagonist p-MPPI reversed reward deficits observed during drug withdrawal (Harrison et al. 2001).

Objectives

We tested the hypothesis that increased serotonergic and noradrenergic neurotransmission, using the SSRI paroxetine which also inhibits noradrenaline reuptake, would alleviate affective aspects of amphetamine withdrawal.

Methods

A discrete-trial, current-threshold, self-stimulation procedure was used to assess brain reward function. The effects of paroxetine and p-MPPI alone and in combination were assessed in non-drug-withdrawing animals. We assessed also the effects of paroxetine and p-MPPI alone and in combination on reward deficits associated with amphetamine withdrawal.

Results

Paroxetine or p-MPPI alone had no effect on thresholds, while the co-administration of p-MPPI (3 mg/kg) and paroxetine (1.25 mg/kg) elevated thresholds in non-withdrawing rats. Amphetamine withdrawal resulted in threshold elevations. The co-administration of p-MPPI and paroxetine reduced the duration of amphetamine-withdrawal-induced reward deficits.

Conclusions

Increased serotonergic and noradrenergic neurotransmission decreased reward function in non-withdrawing rats, while the same treatment reversed reward deficits associated with amphetamine withdrawal. Considering that paroxetine acts on both the serotonin and noradrenaline transporter, these results indicate that the affective symptoms of amphetamine withdrawal, similar to non-drug-induced depressions, may be, in part, mediated through reduced serotonergic and noradrenergic neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed SH, Kenny PJ, Koob GF, Markou A (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5:625–626

    CAS  PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric, Washington

    Google Scholar 

  • Artigas F, Romero L, de Montigny C, Blier P (1996) Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 19:378–383

    Article  CAS  PubMed  Google Scholar 

  • Assie MB, Koek W (1996) (-)-pindolol and (+)-tertatolol affect rat hippocampal 5-HT levels through mechanisms involving not only 5-HT1A but also 5-HT1B receptors. Neuropharmacology 35:213–222

    Article  CAS  PubMed  Google Scholar 

  • Auerbach SB, Hjorth S (1995) Effect of chronic administration of the selective serotonin (5-HT) uptake inhibitor citalopram on extracellular 5-HT and apparent autoreceptor sensitivity in rat forebrain in vivo. Naunyn Schmiedebergs Arch Pharmacol 352:597–606

    Article  CAS  PubMed  Google Scholar 

  • Barr AM, Markou A, Phillips AG (2002) A “crash” course on psychostimulant withdrawal as a model of depression. Trends Pharmacol Sci 23:475–482

    Article  CAS  PubMed  Google Scholar 

  • Bel N, Artigas F (1993) Chronic treatment with fluvoxamine increases extracellular serotonin in the frontal cortex but not in raphe nuclei. Synapse 15:243–245

    CAS  PubMed  Google Scholar 

  • Berman RM, Anand A, Cappiello A, Miller HL, Hu XS, Oren DA, Charney DS (1999) The use of pindolol with fluoxetine in the treatment of major depression: final results from a double-blind, placebo-controlled trial. Biol Psychiatry 45:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Beyer CE, Boikess S, Luo B, Dawson LA (2002) Comparison of the effects of antidepressants on norepinephrine and serotonin concentrations in the rat frontal cortex: an in vivo microdialysis study. J Psychopharmacol 16(4):297–304

    CAS  PubMed  Google Scholar 

  • Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    Article  CAS  PubMed  Google Scholar 

  • Blier P, de Montigny C (1999) Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology 21(Suppl 2):91S–98S

    Article  CAS  PubMed  Google Scholar 

  • Blier P, Bergeron R, de Montigny C (1997) Selective activation of postsynaptic 5-HT1A receptors induces rapid antidepressant response. Neuropsychopharmacology 16(5):333–338

    Article  CAS  PubMed  Google Scholar 

  • Bordet R, Thomas P, Dupuis B (1998) Effect of pindolol on onset of action of paroxetine in the treatment of major depression: intermediate analysis of a double-blind, placebo-controlled trial. Am J Psychiatry 155:1346–1351

    CAS  PubMed  Google Scholar 

  • Bourin M, Redrobe JP, Baker GB (1998) Pindolol does not act only on 5-HT1A receptors in augmenting antidepressant activity in the mouse forced swimming test. Psychopharmacology 136:226–234

    Article  CAS  PubMed  Google Scholar 

  • Bymaster FP, Zhang W, Carter PA, Shaw J, Chernet E, Phebus L, Wong DT, Perry KW (2002) Fluoxetine, but not other selective serotonin reuptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology 160(4):353–361

    Article  CAS  PubMed  Google Scholar 

  • Caldecott-Hazard S, Morgan DG, DeLeon-Jones M, Overstreet DH, Janowsky D (1991) Clinical and biochemical aspects of depressive disorders. II. Transmitter/receptor theories. Synapse 9:251–301

    CAS  PubMed  Google Scholar 

  • Clifford EM, Gartside SE, Umbers V, Cowen PJ, Hajos M, Sharp T (1998) Electrophysiological and neurochemical evidence that pindolol has agonist properties at the 5-HT1A autoreceptor in vivo. Br J Pharmacol 124:206–212

    CAS  PubMed  Google Scholar 

  • Cremers TI, Wiersma LJ, Bosker FJ, den Boer JA, Westerink BH, Wikstrom HV (2001) Is the beneficial antidepressant effect of coadministration of pindolol really due to somatodendritic autoreceptor antagonism? Biol Psychiatry 50:13–21

    Article  CAS  PubMed  Google Scholar 

  • Dawson LA, Nguyen HQ (2000) The role of 5-HT(1A) and 5-HT(1B/1D) receptors on the modulation of acute fluoxetine-induced changes in extracellular 5-HT: the mechanism of action of (+/−)pindolol. Neuropharmacology 39(6):1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Dawson LA, Nguyen HQ, Smith DL, Schechter LE (2002) Effect of chronic fluoxetine and WAY-100635 treatment on serotonergic neurotransmission in the frontal cortex. J Psychopharmacol 16(2):145–152

    CAS  PubMed  Google Scholar 

  • Dreshfield LJ, Wong DT, Perry KW, Engleman EA (1996) Enhancement of fluoxetine-dependent increase of extracellular serotonin (5-HT) levels by (−)-pindolol, an antagonist at 5-HT1A receptors. Neurochem Res 21:557–562

    CAS  PubMed  Google Scholar 

  • Dreshfield LJ, Rocco VP, Wong DT (1997) Greater effects of fluoxetine and its combination with (−)-pindolol in elevating hypothalamic serotonin in rats during dark hours. Chin J Physiol 40:57–61

    CAS  PubMed  Google Scholar 

  • Fava M (2003) The role of the serotonergic and noradrenergic neurotransmitter systems in the treatment of psychological and physical symptoms of depression. J Clin Psychiatry 64(Suppl 13):26–29

    CAS  Google Scholar 

  • Felton TM, Kang TB, Hjorth S, Auerbach SB (2003) Effects of selective serotonin and serotonin/noradrenaline reuptake inhibitors on extracellular serotonin in rat diencephalon and frontal cortex. Naunyn Schmiedebergs Arch Pharmacol 367(3):297–305

    CAS  PubMed  Google Scholar 

  • Gilmor ML, Owens MJ, Nemeroff CB (2002) Inhibition of norepinephrine uptake in patients with major depression treated with paroxetine. Am J Psychiatry 159:1702–1710

    Article  PubMed  Google Scholar 

  • Gobert A, Millan MJ (1999) Modulation of dialysate levels of dopamine, noradrenaline, and serotonin (5-HT) in the frontal cortex of freely-moving rats by (−)-pindolol alone and in association with 5-HT reuptake inhibitors: comparative roles of (-adrenergic, 5-HT1A, and 5-HT1B receptors. Neuropsychopharmacology 21:268–284

    Article  CAS  PubMed  Google Scholar 

  • Harrison AA, Markou A (2001) Serotonergic manipulations both potentiate and reduce brain stimulation reward in rats: involvement of serotonin-1A receptors. J Pharmacol Exp Ther 297:316–325

    CAS  PubMed  Google Scholar 

  • Harrison AA, Liem YT, Markou A (2001) Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology 25:55–71

    Article  CAS  PubMed  Google Scholar 

  • Hinkle DE, Wierma W, Jurs SG (1998) Applied statistics for the behavioral sciences. Houghton Mifflin, Boston, pp 405–410

    Google Scholar 

  • Hjorth S (1993) Serotonin 5-HT1A autoreceptor blockade potentiates the ability of the 5-HT reuptake inhibitor citalopram to increase nerve terminal output of 5-HT in vivo: a microdialysis study. J Neurochem 60:776–779

    CAS  PubMed  Google Scholar 

  • Invernizzi R, Bramante M, Samanin R (1994) Chronic treatment with citalopram facilitates the effect of a challenge dose on cortical serotonin output: role of presynaptic 5-HT1A receptors. Eur J Pharmacol 260:243–246

    Article  CAS  PubMed  Google Scholar 

  • Johnson DA, Gartside SE, Ingram CD (2002) 5-HT1A receptor-mediated autoinhibition does not function at physiological firing rates: evidence from in vitro electrophysiological studies in the rat dorsal raphe nucleus. Neuropharmacology 43:959–965

    Article  CAS  PubMed  Google Scholar 

  • Kokkinidis L, Zacharko RM (1980) Response sensitization and depression following long-term amphetamine treatment in a self-stimulation paradigm. Psychopharmacology 68:73–76

    CAS  PubMed  Google Scholar 

  • Kornetsky C, Esposito RU (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc 38:2473–2476

    CAS  PubMed  Google Scholar 

  • Kreiss DS, Lucki I (1995) Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. J Pharmacol Exp Ther 274:866–876

    CAS  PubMed  Google Scholar 

  • Kung HF, Kung M-P, Clarke W, Maayani S, Zhuang Z-P (1994) A potential 5-HT1A receptor antagonist: p-MPPI. Life Sci 55:1459–1462

    Article  CAS  PubMed  Google Scholar 

  • Leith NJ, Barrett RJ (1976) Amphetamine and the reward system: evidence for tolerance and post-drug depression. Psychopharmacologia 46:19–25

    CAS  PubMed  Google Scholar 

  • Lemberger L, Bergstrom RF, Wolen RL, Farid NA, Enas GG, Aronoff GR (1985) Fluoxetine: clinical pharmacology and physiologic disposition. J Clin Psychiatry 46:14–19

    CAS  Google Scholar 

  • Lin D, Koob GF, Markou A (1999) Differential effects of withdrawal from chronic amphetamine or fluoxetine administration on brain stimulation reward in the rat: interactions between the two drugs. Psychopharmacology 145:283–294

    Article  CAS  PubMed  Google Scholar 

  • Markou A, Koob GF (1992) Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiol Behav 51:111–119

    Article  CAS  PubMed  Google Scholar 

  • Markou A, Kenny PJ (2002) Neuroadaptations to chronic exposure to drugs of abuse: relevance to depressive symptomatology seen across psychiatric diagnostic categories. Neurotox Res 4:297–313

    Article  PubMed  Google Scholar 

  • Markou A, Kosten TR, Koob GF (1998) Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18:135–174

    Article  CAS  PubMed  Google Scholar 

  • Martinez D, Broft A, Laruelle M (2000) Pindolol augmentation of antidepressant treatment: recent contributions from brain imaging studies. Biol Psychiatry 48:844–853

    Article  CAS  PubMed  Google Scholar 

  • McAskill R, Mir S, Taylor D (1998) Pindolol augmentation of antidepressant therapy. Br J Psychiatry 173:203–208

    CAS  PubMed  Google Scholar 

  • Mucha RF, Walker MJK, Fassos FF (1990) Parker and Radow test of drug withdrawal aversion: opposite effect in rats chronically infused with sufentanil or amphetamine. Pharmacol Biochem Behav 35:219–224

    Article  CAS  PubMed  Google Scholar 

  • Myers JL (1979) Fundamentals of experimental design, 3rd edn. Allyn and Bacon, Boston

    Google Scholar 

  • Nelson JC, Mazure CM, Jatlow PI, Bowers MB Jr, Price LH (2004) Combining norepinephrine and serotonin reuptake inhibition mechanisms for treatment of depression: a double-blind, randomized study. Biol Psychiatry 55(3):296–300

    Article  PubMed  Google Scholar 

  • Nutt DJ (2002) The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 17(Suppl 1):S1–S12

    Google Scholar 

  • Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283:1305–1322

    CAS  PubMed  Google Scholar 

  • Owens MJ, Knight DL, Nemeroff CB (2001) Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 50:345–350

    Article  CAS  PubMed  Google Scholar 

  • Parsons LH, Koob GF, Weiss F (1995) Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Ther 274:1182–1191

    CAS  PubMed  Google Scholar 

  • Paterson NE, Myers C, Markou A (2000) Effects of repeated withdrawal from continuous amphetamine administration on brain reward function in rats. Psychopharmacology 152:440–446

    Article  CAS  PubMed  Google Scholar 

  • Pauwels PJ, Palmier C (1994) Differential functional activity of 5-hydroxytryptamine receptor ligands and beta adrenergic receptor antagonists at 5-hydroxytryptamine1B receptor sites in Chinese hamster lung fibroplasts and opossum renal epithelial cells. J Pharmacol Exp Ther 270:938–945

    CAS  PubMed  Google Scholar 

  • Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotaxic atlas of the rat brain, 2nd edn. Plenum, New York

    Google Scholar 

  • Plenge P, Mellerup ET (2003) Pindolol and the acceleration of the antidepressant response. J Affect Disord 75:285–289

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Foster RH (1999) Paroxetine: a review of its use in social anxiety disorder. CNS Drugs 12:151–169

    CAS  Google Scholar 

  • Rickels K, Amsterdam J, Clary C, Fox I, Schweizer E, Weise C (1989) A placebo-controlled, double-blind, clinical trial of paroxetine in depressed outpatients. Acta Psychiatr Scand Suppl 350:117–123

    CAS  PubMed  Google Scholar 

  • Romero L, Bel N, Artigas F, de Montigny C, Blier P (1996) Effect of pindolol on the function of pre- and postsynaptic 5-HT1A receptors: in vivo microdialysis and electrophysiological studies in the rat brain. Neuropsychopharmacology 15:349–360

    Article  CAS  PubMed  Google Scholar 

  • Ryan PM, Kelly JP, Chambers PL, Leonard BE (2001) The toxicity profile of a single dose of paroxetine: an alternative approach to acute toxicity testing in the rat. Pharmacol Toxicol 88:59–66

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacology 340:249–258

    Article  CAS  Google Scholar 

  • Tome MB, Cloninger CR, Watson JP, Isaac MT (1997a) Serotonergic autoreceptor blockade in the reduction of antidepressant latency: personality variables and response to paroxetine and pindolol. J Affect Disord 44:101–109

    Article  CAS  PubMed  Google Scholar 

  • Tome MB, Isaac MT, Harte R, Holland C (1997b) Paroxetine and pindolol: a randomized trial of serotonergic autoreceptor blockade in the reduction of antidepressant latency. Int Clin Psychopharmacol 12:81–89

    CAS  PubMed  Google Scholar 

  • Tulloch IF, Johnson AM (1992) The pharmacologic profile of paroxetine, a new selective serotonin reuptake inhibitor. J Clin Psychiatry 53(Suppl):7–12

    Google Scholar 

  • Weiss F, Parsons LH, Schulteis G, Hyytia P, Lorang MT, Bloom FE, Koob GF (1996) Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci 16:3474–3485

    Google Scholar 

  • Wong DT, Bymaster FP, Engleman EA (1995) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 57:411–441

    Article  CAS  PubMed  Google Scholar 

  • Zanardi R, Franchini L, Gasperini M, Lucca A, Smeraldi E, Perez J (1998) Faster onset of action of fluvoxamine in combination with pindolol in the treatment of delusional depression: a controlled study. J Clin Psychopharmacol 18:441–446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institute of Mental Health grant (MH 62527) and a Novartis Research grant and to A.M. We thank Ms. Christina Glennon for technical assistance and Mr. Mike Arends for editorial assistance. This is publication 14411-NP from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athina Markou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markou, A., Harrison, A.A., Chevrette, J. et al. Paroxetine combined with a 5-HT1A receptor antagonist reversed reward deficits observed during amphetamine withdrawal in rats. Psychopharmacology 178, 133–142 (2005). https://doi.org/10.1007/s00213-004-2008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2008-2

Keywords

Navigation