Skip to main content
Log in

Combined D1/D2 receptor stimulation under conditions of dopamine depletion impairs spatial working memory performance in humans

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The mesocortical dopamine system is regarded as an important modulator of working memory. While it has been established that stimulation of the D1/D2 receptor in primates can improve spatial working memory performance, findings in humans are less consistent. Recent studies in humans suggest that global depletion of dopamine via tyrosine/phenylalanine depletion may impair spatial working memory performance, although these results are also inconsistent, and it has been suggested that task differences may partly underlie the inconsistent findings.

Objectives

This study had two aims: (1) to investigate the effects of acute tyrosine depletion (TPD) on a number of working memory tasks and (2) to examine whether stimulation of D1/D2 receptors under conditions of TPD can attenuate or “reverse” TPD-induced working memory impairments.

Methods

Eighteen healthy male participants performed a spatial working memory delayed-recognition task, non-spatial working memory task and spatial n-back task on three separate occasions, after TPD, TPD and pergolide (D1/D2 agonist), and placebo.

Results

TPD did not impair working memory performance on any of the tasks administered. However, stimulation of D1/D2 receptors under TPD conditions caused a subtle impairment in spatial working memory performance.

Conclusions

The finding that D1/D2 stimulation under TPD conditions impairs working memory highlights the complexity of functional effects of augmenting dopaminergic transmission within a dopamine-depleted state. The lack of TPD-related effects on a range of working memory tasks questions the reliability of TPD as a modulator of dopamine function and working memory performance in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abi-Dargham A, Moore H (2003) Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 9:404–416

    Article  PubMed  CAS  Google Scholar 

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719

    PubMed  CAS  Google Scholar 

  • Arnsten AF (1997) Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11:151–162

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Cai JX, Steere JC, Goldman-Rakic PS (1995) Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J Neurosci 15:3429–3439

    PubMed  CAS  Google Scholar 

  • Bartholomeusz CF, Box G, Van Rooy C, Nathan PJ (2003) The modulatory effects of dopamine D1 and D2 receptor function on object working memory in humans. J Psychopharmacol 17:9–15

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Caforio G, Blasi G, De Candia M, Latorre V, Petruzzella V, Altamura M, Nappi G, Papa S, Callicott JH, Mattay VS, Bellomo A, Scarabino T, Weinberger DR, Nardini M (2004) Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 161:1798–1805

    Article  PubMed  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  PubMed  CAS  Google Scholar 

  • Bublak P, Muller U, Gron G, Reuter M, von Cramon DY (2002) Manipulation of working memory information is impaired in Parkinson's disease and related to working memory capacity. Neuropsychology 16:577–590

    Article  PubMed  CAS  Google Scholar 

  • Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160:2209–2215

    Article  PubMed  Google Scholar 

  • Cohen S (2001) Amino acid analysis using precolumn derivatisation with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Methods Mol Biol 159:39–47

    CAS  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cereb Cortex 11:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson's disease: the role of the prefrontal cortex revealed by PET. Brain 125:584–594

    Article  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia 41:1431–1441

    Article  PubMed  Google Scholar 

  • Di Chiara G, Porceddu ML, Vargiu L, Stefanini E, Gessa GL (1977) Evidence for selective and long-lasting stimulation of “regulatory” dopamine-receptors by bromocriptine (CB 154). Naunyn Schmiedebergs Arch Pharmacol 300:239–245

    PubMed  Google Scholar 

  • Fern-Pollak L, Whone AL, Brooks DJ, Mehta MA (2004) Cognitive and motor effects of dopaminergic medication withdrawal in Parkinson's disease. Neuropsychologia 42:1917–1926

    Article  PubMed  Google Scholar 

  • Frey PW, Colliver JA (1973) Sensitivity and response measures for discrimination learning. Learn Motiv 4:324–327

    Article  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Bergson C, Mrzljak L, Williams GV (1996) Dopamine receptors and cognitive function in nonhuman primates. In: Neve KA, Neve RL (eds) The dopamine receptors. Humana, Totowa, NJ, pp 499–522

    Google Scholar 

  • Gotham AM, Brown RG, Marsden CD (1988) ‘Frontal’ cognitive function in patients with Parkinson's disease ‘on’ and ‘off’ levodopa. Brain 111(Pt 2):299–321

    Article  PubMed  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1993) Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia. J Neural Transm Gen Sect 91:111–134

    Article  PubMed  CAS  Google Scholar 

  • Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ (2001) Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology (Berl) 154:105–111

    Article  CAS  Google Scholar 

  • Harrison BJ, Olver JS, Norman TR, Burrows GD, Wesnes KA, Nathan PJ (2004) Selective effects of acute serotonin and catecholamine depletion on memory in healthy women. J Psychopharmacol 18:29–36

    Google Scholar 

  • Hindmarch I, Parrott AC (1977) Repeated dose comparison of nomifensine, imipramine and placebo on subjective assessments of sleep and objective measures of psychomotor performance. Br J Clin Pharmacol 4(Suppl 2):167S–173S

    PubMed  CAS  Google Scholar 

  • Jaskiw GE, Bongiovanni R (2004) Brain tyrosine depletion attenuates haloperidol-induced striatal dopamine release in vivo and augments haloperidol-induced catalepsy in the rat. Psychopharmacology (Berl) 172:100–107

    Article  CAS  Google Scholar 

  • Kellett MW, Steiger MJ (1999) Deterioration in parkinsonism with low-dose pergolide. J Neurol 246:309–311

    Article  PubMed  CAS  Google Scholar 

  • Kimberg DY, D'Esposito M (2003) Cognitive effects of the dopamine receptor agonist pergolide. Neuropsychologia 41:1020–1027

    Article  PubMed  Google Scholar 

  • Kimberg DY, D'Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depend on working memory capacity. NeuroReport 8:3581–3585

    Article  PubMed  CAS  Google Scholar 

  • Kulisevsky J, Avila A, Barbanoj M, Antonijoan R, Berthier ML, Gironell A (1996) Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson's disease patients at different levodopa plasma levels. Brain 119(Pt 6):2121–2132

    Article  PubMed  Google Scholar 

  • Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992) L-dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology (Berl) 107:394–404

    Article  CAS  Google Scholar 

  • Leyton M, Casey K, Delaney JS, LKolivakis T, Benkefat C (2004) Cocaine craving, euphoria, and self-administration: the effect of dopamine depletion. Neuropsychopharmacology 29:S136

    Google Scholar 

  • Luciana M, Collins P (1997) Dopaminergic modulation of working memory for spatial but not object cues in normal humans. J Cogn Neurosci 9:330–347

    Google Scholar 

  • Luciana M, Depue RA, Arbisi P, Leon A (1992) Facilitation of working memory in humans by a D2 receptor agonist. J Cogn Neurosci 4:58–68

    Article  Google Scholar 

  • Markham A, Benfield P (1997) Pergolide: a review of its pharmacology and therapeutic use in Parkinson's disease. CNS Drugs 7:328–340

    Article  CAS  Google Scholar 

  • Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100:6186–6191

    Article  PubMed  CAS  Google Scholar 

  • McLean A, Rubinsztein JS, Robbins TW, Sahakian BJ (2004) The effects of tyrosine depletion in normal healthy volunteers: implications for unipolar depression. Psychopharmacology (Berl) 171:286–297

    Article  CAS  Google Scholar 

  • McTavish SF, Cowen PJ, Sharp T (1999a) Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology (Berl) 141:182–188

    Article  CAS  Google Scholar 

  • McTavish SF, Callado L, Cowen PJ, Sharp T (1999b) Comparison of the effects of alpha-methyl-p-tyrosine and a tyrosine-free amino acid load on extracellular noradrenaline in the rat hippocampus in vivo. J Psychopharmacol 13:379–384

    PubMed  CAS  Google Scholar 

  • Mehta MA, Sahakian BJ, McKenna PJ, Robbins TW (1999) Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson's disease. Psychopharmacology (Berl) 146:162–174

    Article  CAS  Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20:RC65

    PubMed  CAS  Google Scholar 

  • Mehta MA, Swainson R, Ogilvie AD, Sahakian J, Robbins TW (2001) Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers. Psychopharmacology (Berl) 159:10–20

    Article  CAS  Google Scholar 

  • Mehta MA, McGowan SW, Lawrence AD, Aitken MR, Montgomery AJ, Grasby PM (2003) Systemic sulpiride modulates striatal blood flow: relationships to spatial working memory and planning. NeuroImage 20:1982–1994

    Article  PubMed  Google Scholar 

  • Mehta MA, Manes FF, Magnolfi G, Sahakian BJ, Robbins TW (2004) Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D2 receptor antagonist sulpiride in human volunteers. Psychopharmacology (Berl) 176:331–342

    Article  CAS  Google Scholar 

  • Mehta MA, Hinton EC, Montgomery AJ, Bantick RA, Grasby PM (2005a) Sulpiride and mnemonic function: effects of a dopamine D2 receptor antagonist on working memory, emotional memory and long-term memory in healthy volunteers. J Psychopharmacol 19:29–38

    Article  PubMed  CAS  Google Scholar 

  • Mehta MA, Gumaste G, Montgomery AJ, McTavish SF, Grasby PM (2005b) The effects of acute tyrosine and phenylalanine depletion on spatial working memory and planning in healthy volunteers are predicted by changes in striatal dopamine levels. Psychopharmacology (Berl) Epub ahead of print: Jan 26

  • Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM (2003) Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C]raclopride PET study. Am J Psychiatry 160:1887–1889

    Article  PubMed  Google Scholar 

  • Muller U, von Cramon DY, Pollmann S (1998) D1-versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci 18:2720–2728

    PubMed  CAS  Google Scholar 

  • Oldendorf WH, Szabo J (1976) Amino acid assignment to one of three blood–brain barrier amino acid carriers. Am J Physiol 230:94–98

    PubMed  CAS  Google Scholar 

  • Pardridge WM (1977) Kinetics of competitive inhibition of neutral amino acid transport across the blood–brain barrier. J Neurochem 28:103–108

    Article  PubMed  CAS  Google Scholar 

  • Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49:975–982

    PubMed  CAS  Google Scholar 

  • Pfizer (1996) PrimeMD: primary care evaluation of mental disorders clinical evaluation guide. Pfizer, New York

    Google Scholar 

  • Postle BR, Jonides J, Smith EE, Corkin S, Growdon JH (1997a) Spatial, but not object, delayed response is impaired in early Parkinson's disease. Neuropsychology 11:171–179

    Article  PubMed  CAS  Google Scholar 

  • Postle BR, Locascio JJ, Corkin S, Growdon JH (1997b) The time course of spatial and object learning in Parkinson's disease. Neuropsychologia 35:1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ, Robbins TW (1994) 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin card sort test: possible interactions with subcortical dopamine. J Neurosci 14:2531–2544

    PubMed  CAS  Google Scholar 

  • Roesch-Ely D, Scheffel H, Weiland S, Schwaninger M, Hundemer HP, Kolter T, Weisbrod M (2005) Differential dopaminergic modulation of executive control in healthy subjects. Psychopharmacology (Berl) 178:420–430

    Article  CAS  Google Scholar 

  • Roiser J, McLean A, Ogilvie AD, Blackwell A, Bamber DJ, Goodyer I, Jones PB, Sahakian BJ (2005) The subjective and cognitive effects of acute phenylalanine and tyrosine depletion in patients recovered from depression. Neuropsychopharmacology 30(4):775–785

    PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515–528

    PubMed  CAS  Google Scholar 

  • Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654

    Article  PubMed  CAS  Google Scholar 

  • Tissari AH, Rossetti ZL, Meloni M, Frau MI, Gessa GL (1983) Autoreceptors mediate the inhibition of dopamine synthesis by bromocriptine and lisuride in rats. Eur J Pharmacol 91:463–468

    Article  PubMed  CAS  Google Scholar 

  • Weickert TW, Goldberg TE, Gold JM, Bigelow LB, Egan MF, Weinberger DR (2000) Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 57:907–913

    Article  PubMed  CAS  Google Scholar 

  • Wesnes K, Pincock C (2002) Practice effects on cognitive tasks: a major problem? Lancet Neurol 1:473

    Article  PubMed  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1993) Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb Cortex 3:199–222

    Article  PubMed  CAS  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575

    Article  PubMed  CAS  Google Scholar 

  • Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161–194

    Article  PubMed  CAS  Google Scholar 

  • Young SN, Smith SE, Pihl RO, Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology (Berl) 87:173–177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the volunteers who participated in this study, Jenny Lloyd for collecting blood samples, and Cindy Van Rooy for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kathryn A. Ellis or Pradeep J. Nathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, K.A., Mehta, M.A., Wesnes, K.A. et al. Combined D1/D2 receptor stimulation under conditions of dopamine depletion impairs spatial working memory performance in humans. Psychopharmacology 181, 771–780 (2005). https://doi.org/10.1007/s00213-005-0019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0019-2

Keywords

Navigation