Skip to main content
Log in

Social and environmental influences on opioid sensitivity in rats: importance of an opioid’s relative efficacy at the mu-receptor

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Evidence indicates that social and environmental enrichment can influence the functional maturation of the central nervous system and may affect an organism’s sensitivity to centrally acting drugs.

Objective

The purpose of the present study was to examine the effects of social and environmental enrichment on sensitivity to mu-opioids possessing a range of relative efficacies at the mu-receptor.

Methods

Rats were obtained at weaning (21 days) and divided into two groups immediately upon arrival. Isolated rats were housed individually in opaque laboratory cages with no visual or tactile contact with other rats; enriched rats were housed socially in groups of four in large cages and given various novel objects on a daily basis. After 6 weeks under these conditions, the effects of morphine, levorphanol, buprenorphine, butorphanol, and nalbuphine were examined in the warm-water, tail-withdrawal procedure and the place-conditioning procedure.

Results

In the tail-withdrawal procedure, isolated and enriched rats did not differ in sensitivity to morphine (1.0–30 mg/kg) and levorphanol (0.3–10 mg/kg), but enriched rats were more sensitive to buprenorphine (0.03–3.0 mg/kg), butorphanol (0.3–30 mg/kg), and nalbuphine (0.3–30 mg/kg). In drug combination tests, butorphanol and nalbuphine antagonized the effects of morphine in isolated rats under conditions in which they produced high levels of antinociception in enriched rats. In the place-conditioning procedure, doses of 10 morphine and 3.0 levorphanol established a place preference in both groups of rats, whereas doses of 0.3 buprenorphine, 3.0 butorphanol, and 10 nalbuphine established a place preference only in enriched rats.

Conclusions

These findings may be taken as evidence that enriched rats are more sensitive than isolated rats to the effects of lower-efficacy mu-opioids and that social and environmental enrichment leads to functional alterations in opioid receptor populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JU, Paronis CA, Holtzman SG (1990) Assessment of relative intrinsic activity of mu-opioid analgesics in vivo by using beta-funaltrexamine. J Pharmacol Exp Ther 255:1027–1032

    PubMed  CAS  Google Scholar 

  • Adler MW, Mauron C, Samanin R, Valzelli L (1975) Morphine analgesia in grouped and isolated rats. Psychopharmacologia 41:11–14

    Article  PubMed  CAS  Google Scholar 

  • Amalric M, Cline EJ, Martinez JL Jr, Bloom FE, Koob GF (1987) Rewarding properties of beta-endorphin as measured by conditioned place preference. Psychopharmacology 91:14–19

    Article  PubMed  CAS  Google Scholar 

  • Aoki T, Narita M, Ohnishi O, Mizuo K, Narita M, Yajima Y, Suzuki T (2003) Disruption of the type 1 inositol 1,4,5-trisphosphate receptor gene suppresses the morphine-induced antinociception in the mouse. Neurosci Lett 350:69–72

    Article  PubMed  CAS  Google Scholar 

  • Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    PubMed  CAS  Google Scholar 

  • Bardo MT, Hammer RP Jr (1991) Autoradiographic localization of dopamine D1 and D2 receptors in rat nucleus accumbens: resistance to differential rearing conditions. Neuroscience 45:281–290

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Robinet PM, Hammer RF Jr (1997) Effect of differential rearing environments on morphine-induced behaviors, opioid receptors and dopamine synthesis. Neuropharmacology 36:251–259

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Valone JM, Robinet PM, Shaw WB, Dwoskin LP (1999) Environmental enrichment enhances the stimulant effect of intravenous amphetamine: search for a cellular mechanism in the nucleus accumbens. Psychobiology 27:292–299

    CAS  Google Scholar 

  • Black JE, Sirevaag AM, Wallace CS, Savin MH, Greenough WT (1989) Effects of complex experience on somatic growth and organ development in rats. Dev Psychobiol 22:727–752

    Article  PubMed  CAS  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498

    Article  PubMed  CAS  Google Scholar 

  • Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    Article  PubMed  CAS  Google Scholar 

  • Bowling SL, Bardo MT (1994) Locomotor and rewarding effects of amphetamine in enriched, social, and isolate reared rats. Pharmacol Biochem Behav 48:459–464

    Article  PubMed  CAS  Google Scholar 

  • Bowling SL, Rowlett JK, Bardo MT (1993) The effect of environmental enrichment on amphetamine-stimulated locomotor activity, dopamine synthesis and dopamine release. Neuropharmacology 32:885–893

    Article  PubMed  CAS  Google Scholar 

  • Butelman ER, Winger G, Zernig G, Woods JH (1995) Butorphanol: characterization of agonist and antagonist effects in rhesus monkeys. J Pharmacol Exp Ther 272:845–853

    PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Holtzman SG (1990) Factors affecting restraint stress-induced potentiation of morphine analgesia. Brain Res 537:157–162

    Article  PubMed  CAS  Google Scholar 

  • Cook CD, Barrett AC, Roach EL, Bowman JR, Picker MJ (2000) Sex-related differences in the antinociceptive effects of opioids: importance of rat genotype, nociceptive stimulus intensity, and efficacy at the mu opioid receptor. Psychopharmacology 150:430–442

    Article  PubMed  CAS  Google Scholar 

  • Coudereau JP, Debray M, Monier C, Bourre MJ, Frances H (1997) Isolation impairs place preference conditioning to morphine but not aversive learning in mice. Psychopharmacology 130:117–123

    Article  PubMed  CAS  Google Scholar 

  • Craft RM, Ulibarri CM, Raub DJ (2000) Kappa opioid-induced diuresis in female vs. male rats. Pharmacol Biochem Behav 65:53–59

    Article  PubMed  CAS  Google Scholar 

  • Czlonkowski A, Kostowski W (1977) Factors which might modify analgesic effect of morphine in differentially housed rats. Pol J Pharmacol Pharm 29:117–121

    PubMed  CAS  Google Scholar 

  • del Rosario Capriles N, Cancela LM (2002) Motivational effects mu- and kappa-opioid agonists following acute and chronic restraint stress: involvement of dopamine D(1) and D(2) receptors. Behav Brain Res 132:159–169

    Article  PubMed  Google Scholar 

  • Emmerson PJ, Clark MJ, Mansour A, Akil H, Woods JH, Medzihradsky F (1996) Characterization of opioid agonist efficacy in a C6 glioma cell line expressing the mu opioid receptor. J Pharmacol Exp Ther 278:1121–1127

    PubMed  CAS  Google Scholar 

  • Funada M, Suzuki T, Narita M, Misawa M, Nagase H (1993) Blockade of morphine reward through the activation of kappa-opioid receptors in mice. Neuropharmacology 32:1315–1323

    Article  PubMed  CAS  Google Scholar 

  • Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Garcia-Espana A, Sanchez-Blazquez P (2004) RGSZ1 and GAIP regulate mu- but not delta-opioid receptors in mouse CNS: role in tachyphylaxis and acute tolerance. Neuropsychopharmacology 29:1091–1104

    Article  PubMed  CAS  Google Scholar 

  • Institute of Laboratory Animal Resources (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, DC

    Google Scholar 

  • Jimenez I, Fuentes JA (1993) Subchronic treatment with morphine inhibits the hypertension induced by isolation stress in the rat. Neuropharmacology 32(3):223–227

    Article  PubMed  CAS  Google Scholar 

  • Leander JD, Hart JC, Zerbe RL (1987) Kappa agonist-induced diuresis: evidence for stereoselectivity, strain differences, independence of hydration variables and a result of decreased plasma vasopressin levels. J Pharmacol Exp Ther 242:33–39

    PubMed  CAS  Google Scholar 

  • Liu JG, Rovnaghi CR, Garg S, Anand KJ (2004) Opioid receptor desensitization contributes to thermal hyperalgesia in infant rats. Eur J Pharmacol 491:127–136

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Zheng WH, Powell K, Jhamandas K, Quirion R (2001) Chronic morphine exposure increases the phosphorylation of MAP kinases and the transcription factor CREB in dorsal root ganglion neurons: an in vitro and in vivo study. Eur J Neurosci 14:1091–1104

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Thompson ML, Shuster L (1985) Naloxone injections into the periaqueductal grey area and arcuate nucleus block analgesia in defeated mice. Psychopharmacology 87:39–42

    Article  PubMed  CAS  Google Scholar 

  • Morgan D, Cook CD, Smith MA, Picker MJ (1999) Interaction between the antinociceptive effects of partial opioid agonists and morphine: influence of nociceptive stimulus intensity. Anesth Analg 88:407–413

    Article  PubMed  CAS  Google Scholar 

  • Mucha RF, Herz A (1986) Preference conditioning produced by opioid active and inactive isomers of levorphanol and morphine in rat. Life Sci 38:241–249

    Article  PubMed  CAS  Google Scholar 

  • Nagaraja HS, Jeganathan PS (1999) Influence of different types of stress on selected cardiovascular parameters in rats. Indian J Physiol Pharmacol 43:296–304

    PubMed  CAS  Google Scholar 

  • Naranjo JR, Urdin MC, Borrell J, Fuentes JA (1986) Evidence for a central but not adrenal, opioid mediation in hypertension induced by brief isolation in the rat. Life Sci 38:1923–1930

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J (1980) Brief social isolation, pain responsiveness, and morphine analgesia in young rats. Psychopharmacology 72:111–112

    Article  PubMed  CAS  Google Scholar 

  • Paronis CA, Holtzman SG (1991) Increased analgesic potency of mu agonists after continuous naloxone infusion in rats. J Pharmacol Exp Ther 259:582–589

    PubMed  CAS  Google Scholar 

  • Paronis CA, Holtzman SG (1992) Development of tolerance to the analgesic activity of mu agonists after continuous infusion of morphine, meperidine or fentanyl in rats. J Pharmacol Exp Ther 262:1–9

    PubMed  CAS  Google Scholar 

  • Paul M, Dewey SL, Gardner EL, Brodie JD, Ashby CR Jr (2001) Gamma-vinyl GABA (GVG) blocks expression of the conditioned place preference response to heroin in rats. Synapse 41:219–220

    Article  PubMed  CAS  Google Scholar 

  • Remmers AE, Clark MJ, Mansour A, Akil H, Woods JH, Medzihradsky F (1999) Opioid efficacy in a C6 glioma cell line stably expressing the human kappa opioid receptor. J Pharmacol Exp Ther 288:827–833

    PubMed  CAS  Google Scholar 

  • Sala M, Braida D, Calcaterra P, Leone MP, Gori E (1992) Dose-dependent conditioned place preference produced by etonitazene and morphine. Eur J Pharmacol 217:37–41

    Article  PubMed  CAS  Google Scholar 

  • Schenk S, Britt MD, Atalay J (1982) Isolation rearing decreases opiate receptor binding in rat brain. Pharmacol Biochem Behav 16:841–842

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Herz A (1987) Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of mu- and kappa-opioid agonists. Brain Res 436:169–172

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Herz A (1988) Motivational effects of opioids: influence of D-1 versus D-2 receptor antagonists. Eur J Pharmacol 151:233–242

    Article  PubMed  CAS  Google Scholar 

  • Schenk S, Hunt T, Colle L, Amit Z (1983) Isolation versus grouped housing in rats: differential effects of low doses of heroin in the place preference paradigm. Life Sci 32:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Selley DE, Liu Q, Childers SR (1998) Signal transduction correlates of mu opioid agonist intrinsic efficacy: receptor-stimulated [35S]GTP gamma S binding in mMOR-CHO cells and rat thalamus. J Pharmacol Exp Ther 285:496–505

    PubMed  CAS  Google Scholar 

  • Selley DE, Cao C, Qixu L, Childers SR (2000) Effects of sodium on agonist efficacy for G-protein activation in mu-opioid receptor-transfected CHO cells and rat thalamus. Br J Pharmacol 130:987–996

    Article  PubMed  CAS  Google Scholar 

  • Sirevaag AM, Greenough WT (1988) A multivariate statistical summary of synaptic plasticity measures in rats exposed to complex, social and individual environments. Brain Res 441:386–392

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, French AM (2002) Age-related differences in sensitivity to the antinociceptive effects of kappa opioids in adult male rats. Psychopharmacology 166:255–264

    Article  CAS  Google Scholar 

  • Smith MA, Gray JD (2001) Age-related differences in sensitivity to the antinociceptive effects of opioids in male rats. Influence of nociceptive intensity and intrinsic efficacy at the mu receptor. Psychopharmacology 156:445–453

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Picker MJ (1995) Examination of the kappa agonist and antagonist properties of opioids in the rat drug discrimination procedure: influence of training dose and intrinsic efficacy. Behav Pharmacol 6:703–717

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Picker MJ (1998) Tolerance and cross-tolerance to the rate-suppressing effects of opioids in butorphanol-treated rats: influence of maintenance dose and relative efficacy at the mu receptor. Psychopharmacology 140:57–68

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Barrett AC, Picker MJ (1999) Antinociceptive effects of opioids following acute and chronic administration of butorphanol: influence of stimulus intensity and relative efficacy at the mu receptor. Psychopharmacology 143:261–269

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Bryant PA, McClean JM (2003) Social and environmental enrichment enhances sensitivity to the effects of kappa opioid: studies on antinociception, diuresis and conditioned place preference. Pharmacol Biochem Behav 76:93–101

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, McClean JM, Bryant PA (2004) Sensitivity to the effects of a kappa opioid in rats with free access to exercise wheels: differential effects across behavioral measures. Pharmacol Biochem Behav 77:49–57

    Article  PubMed  CAS  Google Scholar 

  • Steinpreis RE, Rutell AL, Parrett FA (1996) Methadone produces conditioned place preference in the rat. Pharmacol Biochem Behav 54:339–341

    Article  PubMed  CAS  Google Scholar 

  • Stohr T, Almeida OF, Landgraf R, Shippenberg TS, Holsboer F, Spanagel R (1999) Stress- and corticosteroid-induced modulation of the locomotor response to morphine in rats. Behav Brain Res 103:85–93

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Shiozaki Y, Masukawa Y, Misawa M, Nagase H (1992) The role of mu- and kappa-opioid receptors in cocaine-induced conditioned place preference. Jpn J Pharmacol 58:435–442

    Article  PubMed  CAS  Google Scholar 

  • Szikszay M, Benedek G (1989) Tolerance to morphine induced by chronic mild environmental stressors. Acta Physiol Hung 73:447–453

    PubMed  CAS  Google Scholar 

  • Tallarida RJ, Murray RB (1987) Manual of pharmacologic calculations for computer programs. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Thompson ML, Miczek KA, Noda K, Shuster L, Kumar MS (1988) Analgesia in defeated mice: evidence for mediation via central rather than pituitary or adrenal endogenous opioid peptides. Pharmacol Biochem Behav 29:451–456

    Article  PubMed  CAS  Google Scholar 

  • Walker EA, Young AM (2001) Differential tolerance to antinociceptive effects of mu opioids during repeated treatment with etonitazene, morphine, or buprenorphine in rats. Psychopharmacology 154:131–142

    Article  PubMed  CAS  Google Scholar 

  • Walker EA, Butelman ER, DeCosta BR, Woods JH (1993) Opioid thermal antinociception in rhesus monkeys: receptor mechanisms and temperature dependency. J Pharmacol Exp Ther 267:280–286

    PubMed  CAS  Google Scholar 

  • White-Gbadebo D, Holtzman SG (1994) Acute sensitization to opioid antagonists. Pharmacol Biochem Behav 47:559–566

    Article  PubMed  CAS  Google Scholar 

  • Wongwitdecha N, Marsden CA (1996) Effect of social isolation on the reinforcing properties of morphine in the conditioned place preference test. Pharmacol Biochem Behav 53:531–534

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Samoriski GM, McLaughlin JP, Romoser VA, Smrcka A, Hinkle PM, Bidlack JM, Gross RA, Jiang H, Wu D (1999) Genetic alteration of phospholipase C beta3 expression modulates behavioral and cellular responses to mu opioids. Proc Natl Acad Sci 96:10385–10390

    Article  PubMed  CAS  Google Scholar 

  • Young AM, Masaki MA, Geula C (1992) Discriminative stimulus effects of morphine: effects of training dose on agonist and antagonist effects of mu opioids. J Pharmacol Exp Ther 261:246–257

    PubMed  CAS  Google Scholar 

  • Zarrindast MR, Ahmadi S, Haeri-Rohani A, Rezayof A, Jafari MR, Jafari-Sabet M (2004) GABA(A) receptors in the basolateral amygdala are involved in mediating morphine reward. Brain Res 1006:49–58

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Luo LY, Li JG, Chen C, Liu-Chen LY (1997) Activation of the cloned human kappa opioid receptor by agonists enhances [35S] GTPgammaS binding to membranes: determination of potencies and efficacies of ligands. J Pharmacol Exp Ther 282:676–684

    PubMed  CAS  Google Scholar 

  • Zimmerman DM, Leander JD, Reel JK, Hynes MD (1987) Use of beta-funaltrexamine to determine mu opioid receptor involvement in the analgesic activity of various opioid ligands. J Pharmacol Exp Ther 241:374–378

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Davidson College and US Public Service Grants DA13461 and DA14255 from the National Institute on Drug Abuse. The authors thank Dr. Drake Morgan for helpful comments made on an earlier version of this manuscript, and Amy Becton for expert animal care and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.A., Chisholm, K.A., Bryant, P.A. et al. Social and environmental influences on opioid sensitivity in rats: importance of an opioid’s relative efficacy at the mu-receptor. Psychopharmacology 181, 27–37 (2005). https://doi.org/10.1007/s00213-005-2218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2218-2

Keywords

Navigation