Skip to main content
Log in

The antipsychotic potential of l-stepholidine—a naturally occurring dopamine receptor D1 agonist and D2 antagonist

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

l-Stepholidine, a dopamine D2 antagonist with D1 agonist activity, should in theory control psychosis and treat cognitive symptoms by enhancing cortical dopamine transmission. Though several articles describe its impact on the dopamine system, it has not been systematically evaluated and compared to available antipsychotics.

Materials and methods

We examined its in vitro interaction with dopamine D2 and D1 receptors and compared its in vivo pharmacokinetic profile to haloperidol (typical) and clozapine (atypical) in animal models predictive of antipsychotic activity.

Results

In vitro, l-stepholidine showed significant activity on dopamine receptors, and in vivo, l-stepholidine demonstrated a dose-dependent striatal receptor occupancy (RO) at D1 and D2 receptors (D1 9–77%, 0.3–30 mg/kg; D2 44–94%, 1–30 mg/kg), though it showed a rather rapid decline of D2 occupancy related to its quick elimination. In tests of antipsychotic efficacy, it was effective in reducing amphetamine- and phencyclidine-induced locomotion as well as conditioned avoidance response, whereas catalepsy and prolactin elevation, the main side effects, appeared only at high D2RO (>80%). This preferential therapeutic profile was supported by a preferential immediate early gene (Fos) induction in the nucleus accumbens over dorsolateral striatum. We confirmed its D1 agonism in vitro, and then using D2 receptor, knockout mice showed that l-stepholidine shows D1 agonism in the therapeutic dose range.

Conclusions

Thus, l-stepholidine shows efficacy like an “atypical” antipsychotic in traditional animal models predictive of antipsychotic activity and shows in vitro and in vivo D1 agonism, and, if its rapid elimination does not limit its actions, it could provide a unique therapeutic approach to schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abi-Dargham A (2004) Do we still believe in the dopamine hypothesis? New data bring new evidence. Int J Neuropsychopharmacol 7(Suppl 1):S1–5

    Article  PubMed  CAS  Google Scholar 

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719

    PubMed  CAS  Google Scholar 

  • Aravagiri M, Marder SR (2002) Brain, plasma and tissue pharmacokinetics of risperidone and 9-hydroxyrisperidone after separate oral administration to rats. Psychopharmacology (Berl) 159:424–431

    Article  CAS  Google Scholar 

  • Aravagiri M, Teper Y, Marder SR (1999) Pharmacokinetics and tissue distribution of olanzapine in rats. Biopharm Drug Dispos 20:369–377

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18:63–101

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Hyttel J, Sanchez C (1992) Partial and full dopamine D1 receptor agonists in mice and rats: relation between behavioural effects and stimulation of adenylate cyclase activity in vitro. Eur J Pharmacol 213:259–267

    Article  PubMed  CAS  Google Scholar 

  • Castner SA, Williams GV, Goldman-Rakic PS (2000) Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287:2020–2022

    Article  PubMed  CAS  Google Scholar 

  • Chen LJ, Guo X, Wang QM, Jin GZ (1992) Feed-back regulation of presynaptic D2 receptors blockaded by l-stepholidine and l-tetrahydropalmatine. Acta Pharmacol Sin 13:442–445

    CAS  Google Scholar 

  • Desai RI, Terry P, Katz JL (2005) A comparison of the locomotor stimulant effects of D1-like receptor agonists in mice. Pharmacol Biochem Behav 81:843–848

    Article  PubMed  CAS  Google Scholar 

  • Dong ZJ, Chen LJ, Jin GZ, Creese I (1997a) GTP regulation of (−)-stepholidine binding to R(H) of D1 dopamine receptors in calf striatum. Biochem Pharmacol 54:227–232

    Article  PubMed  CAS  Google Scholar 

  • Dong ZJ, Guo X, Chen LJ, Han YF, Jin GZ (1997b) Dual actions of (−)-stepholidine on the dopamine receptor-mediated adenylate cyclase activity in rat corpus striatum. Life Sci 61:465–472

    Article  PubMed  CAS  Google Scholar 

  • Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, Chen C, Chen X, Choo E, Cianfrogna J, Cox LM, Gibbs JP, Gibbs MA, Hatch H, Hop CE, Kasman IN, Laperle J, Liu J, Liu X, Logman M, Maclin D, Nedza FM, Nelson F, Olson E, Rahematpura S, Raunig D, Rogers S, Schmidt K, Spracklin DK, Szewc M, Troutman M, Tseng E, Tu M, Van Deusen JW, Venkatakrishnan K, Walens G, Wang EQ, Wong D, Yasgar AS, Zhang C (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33:165–174

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Zhang XX, Jin GZ (2006) Effects of (−)stepholidine in animal models for schizophrenia. Acta Pharmacol Sin 27:1111–1118

    Article  PubMed  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London

    Google Scholar 

  • Floresco SB, Geyer MA, Gold LH, Grace AA (2005) Developing predictive animal models and establishing a preclinical trials network for assessing treatment effects on cognition in schizophrenia. Schizophr Bull 31:888–894

    Article  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Goldman-Rakic PS, Muly EC 3rd, Williams GV (2000) D1 receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31:295–301

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Yu Y, Xing L, Jin GZ, Zhou J (2002) (−)-Stepholidine promotes proliferation and neuronal differentiation of rat embryonic striatal precursor cells in vitro. Neuroreport 13:2085–2089

    Article  PubMed  CAS  Google Scholar 

  • Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L (1994) Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology 11:245–256

    PubMed  CAS  Google Scholar 

  • Huang KX, Sun BC, Gonon FG, Jin GZ (1991) Effects of tetrahydroprotoberberines on dopamine release and 3,4-dihydroxyphenylacetic acid level in corpus striatum measured by in vivo voltammetry. Acta Pharmacol Sin 12:32–36

    CAS  Google Scholar 

  • Jentsh JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  Google Scholar 

  • Jin GZ (1987) (−)-Tetrahydropalmatine and its analogues as new dopamine receptor antagonists. Trends Pharmacol Sci 8:81–82

    Article  CAS  Google Scholar 

  • Jin GZ, Sun BC (1995) Neuropharmacological effects of (−)-stepholidine and its analogues on brain dopaminergic system. Adv Exp Med Biol 363:27–28

    PubMed  CAS  Google Scholar 

  • Jin GZ, Huang KX, Sun BC (1992) Dual actions of (−)-stepholidine on dopamine receptor subtypes after substantia nigra lesion. Neurochem Int 20(Suppl):175S–178S

    Article  PubMed  CAS  Google Scholar 

  • Jin GZ, Zhu ZT, Fu Y (2002) (−)-Stepholidine: a potential novel antipsychotic drug with dual D1 receptor agonist and D2 receptor antagonist actions. Trends Pharmacol Sci 23:4–7

    Article  PubMed  CAS  Google Scholar 

  • Kane JM, Malhotra A (2003) The future of pharmacotherapy for schizophrenia. World Psychiatry 2:81–86

    PubMed  Google Scholar 

  • Kapur S, VanderSpek SC, Brownlee BA, Nobrega JN (2003) Antipsychotic dosing in preclinical models is often unrepresentative of the clinical condition: a suggested solution based on in vivo occupancy. J Pharmacol Exp Ther 305:625–631

    Article  PubMed  CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Guo X, Wang BC, Jin GZ (1999) Increased phosphorylation of DARPP-32 by D1 agonistic action of l-stepholidine in the 6-OHDA-lesioned rat striatum. Acta Physiologica Sinica 51:65–72

    PubMed  CAS  Google Scholar 

  • McNamara FN, Clifford JJ, Tighe O, Kinsella A, Drago J, Fuchs S, Croke DT, Waddington JL (2002) Phenotypic, ethologically based resolution of spontaneous and D2-like vs D1-like agonist-induced behavioural topography in mice with congenic D(3) dopamine receptor “knockout”. Synapse 46:19–31

    Article  PubMed  CAS  Google Scholar 

  • Mo YQ, Jin XL, Chen YT, Jin GZ, Shi WX (2005) Effects of l-stepholidine on forebrain Fos expression: comparison with clozapine and haloperidol. Neuropsychopharmacology 30:261–267

    Article  PubMed  CAS  Google Scholar 

  • Natesan S, Reckless GE, Nobrega JN, Fletcher PJ, Kapur S (2006) Dissociation between in vivo occupancy and functional antagonism of dopamine D(2) receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology 31:1854–1863

    Article  PubMed  CAS  Google Scholar 

  • Odontiadis J, Mackenzie EM, Natesan S, Mamo D, Kapur S, Baker GB (2007) Quantification of l-stepholidine in rat brain and plasma by high performance liquid chromatography combined with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 850:544–547

    Article  PubMed  CAS  Google Scholar 

  • Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636

    Article  PubMed  CAS  Google Scholar 

  • Olsen CM, Duvauchelle CL (2001) Intra-prefrontal cortex injections of SCH 23390 influence nucleus accumbens dopamine levels 24 h post-infusion. Brain Res 922:80–86

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan GJ, Kinsella A, Sibley DR, Tighe O, Croke DT, Waddington JL (2005) Ethological resolution of behavioural topography and D1-like versus D2-like agonist responses in congenic D5 dopamine receptor mutants: identification of D5:D2-like interactions. Synapse 55:201–211

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan GJ, Kinsella A, Grandy DK, Tighe O, Croke DT, Waddington JL (2006) Ethological resolution of behavioral topography and D2-like vs. D1-like agonist responses in congenic D4 dopamine receptor “knockouts”: identification of D4:D1-like interactions. Synapse 59:107–118

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 104:654–659

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146

    Article  PubMed  CAS  Google Scholar 

  • Robertson GS, Matsumura H, Fibiger HC (1994) Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 271:1058–1066

    PubMed  CAS  Google Scholar 

  • vhRyman-Rasmussen JP, Nichols DE, Mailman RB (2005) Differential activation of adenylate cyclase and receptor internalization by novel dopamine D1 receptor agonists. Mol Pharmacol 68:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • So CH, Varghese G, Curley KJ, Kong MM, Alijaniaram M, Ji X, Nguyen T, O’Dowd BF, George SR (2005) D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol Pharmacol 68:568–578

    PubMed  CAS  Google Scholar 

  • Terry P, Katz JL (1992) Differential antagonism of the effects of dopamine D1-receptor agonists on feeding behavior in the rat. Psychopharmacology (Berl) 109:403–409

    Article  CAS  Google Scholar 

  • Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    Article  PubMed  CAS  Google Scholar 

  • Wadenberg ML, Kapur S, Soliman A, Jones C, Vaccarino F (2000) Dopamine D2 receptor occupancy predicts catalepsy and the suppression of conditioned avoidance response behavior in rats. Psychopharmacology (Berl) 150:422–429

    Article  CAS  Google Scholar 

  • Yamaoka K, Nakagawa T, Uno T (1978) Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm 6:547–558

    Article  PubMed  CAS  Google Scholar 

  • Yang CR, Chen L (2005) Targeting prefrontal cortical dopamine D1 and N-methyl-d-aspartate receptor interactions in schizophrenia treatment. Neuroscientist 11:452–470

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZD, Zhou CM, Jin GZ, Zhang X, Yang L (1990) Pharmacokinetics and autoradiography of [3H] or [14C]stepholidine. Acta Pharmacol Sin 11:289–292

    CAS  Google Scholar 

  • Zhang X, Sun BC, Jin GZ (1997) Atypical neuroleptic properties of l-stepholidine. Science in China (Series C) 40:532–538

    Google Scholar 

  • Zhang L, Zhou R, Xiang G (2005) Stepholidine protects against H2O2 neurotoxicity in rat cortical neurons by activation of Akt. Neurosci Lett 383:328–332

    Article  PubMed  CAS  Google Scholar 

  • Zhu ZT, Wu WR, Fu Y, Jin GZ (2000) I-stepholidine facilitates inhibition of mPFC DA receptors on subcortical NAc DA release. Acta Pharmacol Sin 21:663–667

    PubMed  CAS  Google Scholar 

  • Zou LL, Chen Y, Song YY, Jin GZ (1996) Effect of (−)-stepholidine on serum prolactin level of female rats. Acta Pharmacol Sin 17:311–314

    CAS  Google Scholar 

  • Zou LL, Liu J, Jin GZ (1997) Involvement of receptor reserve in D1 agonistic action of (−)-stepholidine in lesioned rats. Biochem Pharmacol 54:233–240

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a Stanley Medical Research Institute grant (#04R-826) to Shitij Kapur. Susan R. George was supported by a grant from the National Institute on Drug Abuse. The authors would like to thank Jun Parkes of the PET group, Roger Raymond of the Neuroimaging Section of CAMH, and George Varghese from the Department of Pharmacology, University of Toronto for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shitij Kapur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Customized in vitro screening of l-stepholidine by Novascreen® (DOC 112 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natesan, S., Reckless, G.E., Barlow, K.B.L. et al. The antipsychotic potential of l-stepholidine—a naturally occurring dopamine receptor D1 agonist and D2 antagonist. Psychopharmacology 199, 275–289 (2008). https://doi.org/10.1007/s00213-008-1172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1172-1

Keywords

Navigation