Skip to main content

Advertisement

Log in

Psychotropic drug-induced locomotor hyperactivity and prepulse inhibition regulation in male and female aromatase knockout (ArKO) mice: role of dopamine D1 and D2 receptors and dopamine transporters

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

The aim of the present study was to investigate the possible role of oestrogen in schizophrenia by comparing aromatase knockout (ArKO) mice, which are unable to produce oestrogen, with wild-type controls using two behavioural animal models with relevance to the illness, psychotropic drug-induced locomotor hyperactivity and prepulse inhibition (PPI).

Results

Baseline PPI was not different between ArKO and controls. Treatment with apomorphine, MK-801 and amphetamine caused disruption of PPI in all groups. However, in female but not male ArKO mice, the effect of both apomorphine and amphetamine was reduced. In female ArKO mice, amphetamine-induced hyperlocomotion was markedly reduced, but in male mice, the genotype difference was far smaller. Female but not male ArKO mice also showed a reduction of phencyclidine-induced locomotor hyperactivity. The density of dopamine transporters, but not D1 and D2 receptors, was significantly increased in the caudate putamen of male but not female ArKO mice compared to wild-type mice. This could represent a compensatory dopaminergic upregulation in male ArKO mice.

Conclusion

Because of their lack of oestrogen production, it was anticipated that ArKO mice would display enhanced effects of amphetamine on locomotor activity and PPI. Instead, in these animals, aromatase knockout appeared to be ‘protective’. This may represent limitations in the ability to model a complex illness such as schizophrenia in a constitutive knockout model, such as ArKO mice. Moreover, the current results may point at the involvement of other sex steroids, which are also altered in ArKO mice, in dopaminergic control of behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554

    PubMed  CAS  Google Scholar 

  • Bazzette TJ, Becker JB (1994) Sex differences in the rapid and acute effects of estrogen on striatal D2 dopamine receptor binding. Brain Res 637:163–172

    Article  Google Scholar 

  • Becker J (1990a) Direct effect of 17ß-estradiol on striatum: sex differences in dopamine release. Synapse 5:157–164

    Article  PubMed  CAS  Google Scholar 

  • Becker JB (1990b) Estrogen rapidly potentiates amphetamine-induced striatal dopamine release and rotational behavior during microdialysis. Neurosci Lett 118:169–171

    Article  PubMed  CAS  Google Scholar 

  • Becker JB (1999) Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav 64:803–812

    Article  PubMed  CAS  Google Scholar 

  • Becker JB, Molenda H, Hummer DL (2001) Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann N Y Acad Sci 937:172–187

    Article  PubMed  CAS  Google Scholar 

  • Bertrand PP, Paranavitane UT, Chavez C, Gogos A, Jones M, Van Den Buuse M (2005) The effect of low estrogen state on serotonin transporter function in mouse hippocampus: a behavioral and electrochemical study. Brain Res 1064:10–20

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead K, Swerdlow NR (2001) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49:171–178

    Article  PubMed  CAS  Google Scholar 

  • Canfield DR, Spealman RD, Kaufman MJ, Madras BK (1990) Autoradiographic localization of cocaine binding sites by [3H]CFT ([3H]WIN 35,428) in the monkey brain. Synapse 6:189–195

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Hansson LO, Waters N, Carlsson Ml (1999) A glutamatergic deficiency model of schizophrenia. Br J Psychiatry 174:2–6

    Google Scholar 

  • Castle D, Sham P, Murray R (1998) Differences in distribution of ages of onset in males and females with schizophrenia. Schizophr Res 33:179–183

    Article  PubMed  CAS  Google Scholar 

  • Choy KH, Van Den Buuse M (2008) Attenuated disruption of prepulse inhibition by dopaminergic stimulation after maternal deprivation and adolescent corticosterone treatment in rats. Eur Neuropsychopharmacol 18:1–13

    Article  PubMed  CAS  Google Scholar 

  • Choy KHC, De Visser Y, Van Den Buuse M (2008) The effect of ‘two hit’ neonatal and young-adult stress on dopaminergic modulation of prepulse inhibition and dopamine receptor density. Br J Pharmacol 156:388–396

    Article  CAS  Google Scholar 

  • Creese I, Iversen SD (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 83:419–436

    Article  PubMed  CAS  Google Scholar 

  • Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J (2004) Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology. Eur J Neurosci 20:217–228

    Article  PubMed  CAS  Google Scholar 

  • Fisher CR, Graves KH, Parlow AF, Simpson ER (1998) Characterization of mice deficient in aromatase (Arko) because of targeted disruption of the Cyp19 gene. Proc Natl Acad Sci USA 95:6965–6970

    Article  PubMed  CAS  Google Scholar 

  • Forgie ML, Stewart J (1994) Sex differences in the locomotor-activating effects of amphetamine: role of circulating testosterone in adulthood. Physiol Behav 55:639–644

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 787–798

    Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, Martin S, Jones ME, Van Den Buuse M (2006) Oestrogen modulation of the effect of 8-OH-DPAT on prepulse inhibition: effects of aromatase deficiency and castration in mice. Psychopharmacology 188:100–110

    Article  PubMed  CAS  Google Scholar 

  • Habara T, Hamamura T, Miki M, Ohashi K, Kuroda S (2001) M100907, a selective 5-HT2A receptor antagonist, attenuates phencyclidine-induced fos expression in discrete regions of rat brain. Eur J Pharmacol 417:189–194

    Article  PubMed  CAS  Google Scholar 

  • Häfner H (2003) Gender differences in schizophrenia. Psychoneuroendocrinology 28:17–54

    Article  PubMed  Google Scholar 

  • Hill RA, Mcinnes KJ, Gong ECH, Jones MEE, Simpson ER, Boon WC (2007) Estrogen deficient male mice develop compulsive behavior. Biol Psychiatry 61:359–366

    Article  PubMed  CAS  Google Scholar 

  • Hruska Re, Silbergeld EK (1980) Estrogen treatment enhances dopamine receptor sensitivity in the rat striatum. Eur J Pharmacol 61:397–400

    Article  PubMed  CAS  Google Scholar 

  • Johnson KM, Jones SM (1990) Neuropharmacology of phencyclidine: basic mechanisms and therapeutic potential. Annu Rev Pharmacol Toxicol 30:707–750

    Article  PubMed  CAS  Google Scholar 

  • Jones MEE, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER (2000) Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci USA 97:12735–12740

    Article  PubMed  CAS  Google Scholar 

  • Kelly PH (1975) Unilateral 6-hydroxydopamine lesions of nigrostriatal or mesolimbic dopamine-containing terminals and the drug-induced rotation of rats. Brain Res 100:63–169

    Article  Google Scholar 

  • Kusljic S, Brosda J, Norman TR, Van Den Buuse M (2005) Brain serotonin depletion by lesions of the median raphe nucleus enhances the psychotomimetic action of phencyclidine, but not dizocilpine (MK-801), in rats. Brain Res 1049:217–226

    Article  PubMed  CAS  Google Scholar 

  • Lammers CH, D’Souza UH, Qin ZH, Lee SH, Yajima S, Mouradian MM (1999) Regulation of striatal dopamine receptors by corticosterone: an in vivo and in vitro study. Mol Brain Res 69:281–285

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    Article  PubMed  CAS  Google Scholar 

  • Le Saux M, Morissette M, Di Paolo T (2006) Erß mediates the estradiol increase of D2 receptors in rat striatum and nucleus accumbens. Neuropharmacology 50:451–457

    Article  PubMed  CAS  Google Scholar 

  • Levesque D, Di Paolo T (1993) Modulation by estradiol and progesterone of the GTP effect on striatal D-2 dopamine receptors. Biochem Pharmacol 45:723–733

    Article  PubMed  CAS  Google Scholar 

  • Makanjuola R, Ashcroft GW (1982) Behavioural effects of electrolytic and 6OHDA lesions of the accumbens and caudate-putamen nuclei. Psychopharmacology 76:333–340

    Article  CAS  Google Scholar 

  • Millan Mj, Brocco M, Gobert A, Joly F, Bervoets K, Rivet JM, Newman-Tancredi A, Audinot V, Maurel S (1999) Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A Sites For PCP-induced locomotion in the rat. Eur J NeuroSci 11:4419–4432

    Article  PubMed  CAS  Google Scholar 

  • Naik SR, Kelkar MR, Sheth UK (1978) Attenuation of stereotyped behaviour by sex steroids. Psychopharmacology (Berl) 57:211–214

    Article  CAS  Google Scholar 

  • Peng RY, Mansbach RS, Braff DL, Geyer MA (1990) A D2 dopamine receptor agonist disrupts sensorimotor gating in rats—implications for dopaminergic abnormalities in schizophrenia. Neuropsychopharmacology 3:211–218

    PubMed  CAS  Google Scholar 

  • Pijnenburg AJ, Honig WM, Van Rossum JM (1975) Inhibition of d-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat. Psychopharmacologia 41:87–95

    Article  PubMed  CAS  Google Scholar 

  • Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1999) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633

    PubMed  CAS  Google Scholar 

  • Ralph-Williams RJ, Lehmann-Masten V, Otero-Corchon V, Low MJ, Geyer MA (2002) Differential effects of direct and indirect dopamine agonists on prepulse inhibition: a study in D1 and D2 receptor knock-out mice. J Neurosci 22:9604–9611

    PubMed  CAS  Google Scholar 

  • Ralph-Williams RJ, Lehmann-Masten V, Geyer MA (2003) Dopamine D1 rather than D2 receptor agonists disrupt prepulse inhibition of startle in mice. Neuropsychopharmacology 28:108–118

    Article  PubMed  CAS  Google Scholar 

  • Robertson KM, O’donnell L, Jones MEE, Meachem SJ, Boon WC, Fischer CR, Graves KH, Mclachlan RI, Simpson ER (1999) Impairment of spermatogenesis in mice lacking a functional aromatase (Cyp 19) gene. Proc Natl Acad Sci USA 96:7986–7991

    Article  PubMed  CAS  Google Scholar 

  • Scheffel U, Steinert C, Kim SE, Ehlers MD, Boja JW, Kuhar MJ (1996) Effect of dopaminergic drugs on the in vivo binding of [3H]WIN 35, 428 to central dopamine transporters. Synapse 23:61–69

    Article  PubMed  CAS  Google Scholar 

  • Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K, Speed C, Jones M (2002) Aromatase—a brief overview. Annu Rev Physiol 64:93–127

    Article  PubMed  CAS  Google Scholar 

  • Van Den Buuse M, Simpson ER, Jones ME (2003) Prepulse inhibition of acoustic startle in aromatase knock-out mice: effects of age and gender. Genes Brain Behav 2:93–102

    Article  PubMed  Google Scholar 

  • Van Den Buuse M, Garner B, Gogos A, Kusljic S (2005) Importance of animal models in schizophrenia research. Aust NZ J Psychiatry 39:550–557

    Article  Google Scholar 

  • Wan FJ, Swerdlow NR (1993) Intra-accumbens infusion of quinpirole impairs sensorimotor gating of acoustic startle in rats. Psychopharmacology 113:103–109

    Article  PubMed  CAS  Google Scholar 

  • Woodruff GN, Kelly PH, Elkhawad AO (1976) Effects of dopamine receptor stimulants on locomotor activity of rats with electrolytic or 6-hydroxydopamine-induced lesions of the nucleus accumbens. Psychopharmacologia 47:195–198

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Becker JB (1998) Effects of estrogen agonists on amphetamine-stimulated striatal dopamine release. Synapse 29:379–391

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Russig H, Feldon J (2004) Apomorphine-induced prepulse inhibition disruption is associated with a paradoxical enhancement of prepulse stimulus reactivity. Neuropsychopharmacology 29:240–248

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Ka C, Ml T (2002) Estrogen regulation of gene expression in the brain: a possible mechanism altering the response to psychostimulants in female rats. Brain Res Mol Brain Res 100:75–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Joan and Peter Clemenger Foundation and by the Percy Baxter Charitable Fund for the Integrated Psychiatric Neuroscience Facility. The expert technical assistance of Sally Martin is gratefully acknowledged.

The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten van den Buuse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavez, C., Gogos, A., Jones, M.E. et al. Psychotropic drug-induced locomotor hyperactivity and prepulse inhibition regulation in male and female aromatase knockout (ArKO) mice: role of dopamine D1 and D2 receptors and dopamine transporters. Psychopharmacology 206, 267–279 (2009). https://doi.org/10.1007/s00213-009-1604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1604-6

Keywords

Navigation