Skip to main content

Advertisement

Log in

Effects on enantiomeric drug disposition and open-field behavior after chronic treatment with venlafaxine in the P-glycoprotein knockout mice model

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

P-glycoprotein (P-gp) plays an important role in the efflux of drugs from the brain back into the bloodstream and can influence the pharmacokinetics and pharmacodynamics of drug molecules. To our knowledge, no studies have reported pharmacodynamic effects of any antidepressant drug in the P-gp knockout mice model.

Objective

The aim of this study was to investigate the enantiomeric venlafaxine and metabolite concentrations in serum and brain of abcb1ab (−/−) mice compared to wild-type mice upon chronic dosing, and to assess the effect of venlafaxine treatment on open-field behavior.

Methods

P-gp knockout and wild-type mice received two daily intraperitoneal injections of venlafaxine (10 mg/kg) over ten consecutive days. Locomotor and rearing activities were assessed on days 7 and 9. After 10 days, drug and metabolite concentrations in brain and serum were determined using an enantioselective LC/MS/MS method.

Results

The brain concentrations of venlafaxine and its three demethylated metabolites were two to four times higher in abcb1ab (−/−) mice compared to abcb1ab (+/+) mice. The behavioral results indicated an impact on exploration-related behaviors in the open-field as center activity was increased, and rears were decreased by venlafaxine treatment.

Conclusion

Our results show that P-gp at the blood–brain barrier plays an important role in limiting brain entry of the enantiomers of venlafaxine and its metabolites after chronic dosing. Taken together, the present pharmacokinetic and pharmacodynamic findings offer the possibility that the expression of P-gp in patients may be a contributing factor for limited treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  PubMed  CAS  Google Scholar 

  • Apelqvist G, Wikell C, Hindfelt B, Bergqvist PBF, Andersson G, Bengtsson F (1999) Altered open-field behavior in experimental chronic hepatic encephalopathy after single venlafaxine and citalopram challenges. Psychopharmacology (Berl) 143:408–416

    Article  CAS  Google Scholar 

  • Avgustinovich DF, Lipina TV, Bondar NP, Alekseyenko OV, Kudryavtseva NN (2000) Features of the genetically defined anxiety in mice. Behav Genet 30:101–109

    Article  PubMed  CAS  Google Scholar 

  • Baker GB, Prior TI (2002) Stereochemistry and drug efficacy and development: relevance of chirality to antidepressant and antipsychotic drugs. Ann Med 34:537–543

    Article  PubMed  CAS  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Zullin DF, Eap CB (2002) Enantiomers' potential in psychopharmacology—a critical analysis with special emphasis on the antidepressant escitalopram. Eur Neuropsychopharmacol 12:433–444

    Article  PubMed  CAS  Google Scholar 

  • Brocco M, Dekeyne A, Veiga S, Girardon S, Millan MJ (2002) Induction of hyperlocomotion in mice exposed to a novel environment by inhibition of serotonin reuptake. A pharmacological characterization of diverse classes of antidepressant agents. Pharmacol Biochem Behav 71:667–680

    Article  PubMed  CAS  Google Scholar 

  • Cordon-Cardo C, O'Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86:695–698

    Article  PubMed  CAS  Google Scholar 

  • de Klerk OL, Bosker FJ, Willemsen AT, van Waarde A, Visser AK, de Jager T, Dagyte G, den Boer JA, Dierckx RA, Meerlo P (2009) Chronic stress and antidepressant treatment have opposite effects on P-glycoprotein at the blood-brain barrier: an experimental PET study in rats. J Psychopharmacol 24:1237–1242

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira RA, Cunha GM, Borges KD, de Bruin GS, dos Santos-Filho EA, Viana GS, de Bruin VM (2004) The effect of venlafaxine on behaviour, body weight and striatal monoamine levels on sleep-deprived female rats. Pharmacol Biochem Behav 79:499–506

    Article  PubMed  CAS  Google Scholar 

  • Devault A, Gros P (1990) Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol Cell Biol 10:1652–1663

    PubMed  CAS  Google Scholar 

  • Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, Chen C, Chen X, Choo E, Cianfrogna J et al (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33:165–174

    Article  PubMed  CAS  Google Scholar 

  • Ehret MJ, Levin GM, Narasimhan M, Rathinavelu A (2007) Venlafaxine induces P-glycoprotein in human Caco-2 cells. Hum Psychopharmacol 22:49–53

    Article  PubMed  CAS  Google Scholar 

  • Gentsch C, Lichtsteiner M, Feer H (1987) Open field and elevated plus-maze: a behavioural comparison between spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats and the effects of chlordiazepoxide. Behav Brain Res 25:101–107

    Article  PubMed  CAS  Google Scholar 

  • Gershenfeld HK, Paul SM (1997) Mapping quantitative trait loci for fear-like behaviors in mice. Genomics 46:1–8

    Article  PubMed  CAS  Google Scholar 

  • Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry JM, Bondolfi G, Bertschy G (2008) CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monit 30:474–482

    PubMed  CAS  Google Scholar 

  • Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 97:3473–3478

    Article  PubMed  CAS  Google Scholar 

  • Holliday SM, Benfield P (1995) Venlafaxine. A review of its pharmacology and therapeutic potential in depression. Drugs 49:280–294

    Article  PubMed  CAS  Google Scholar 

  • Howland RH (2009) Clinical implications of chirality and stereochemistry in psychopharmacology. J Psychosoc Nurs Ment Health Serv 47:17–21

    Google Scholar 

  • Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack GM (2007a) Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50, u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 323:346–355

    Article  PubMed  CAS  Google Scholar 

  • Kalvass JC, Olson ER, Pollack GM (2007b) Pharmacokinetics and pharmacodynamics of alfentanil in P-glycoprotein-competent and P-glycoprotein-deficient mice: P-glycoprotein efflux alters alfentanil brain disposition and antinociception. Drug Metab Dispos 35:455–459

    Article  PubMed  CAS  Google Scholar 

  • Karlsson L, Schmitt U, Josefsson M, Carlsson B, Ahlner J, Bengtsson F, Kugelberg FC, Hiemke C (2010) Blood-brain barrier penetration of the enantiomers of venlafaxine and its metabolites in mice lacking P-glycoprotein. Eur Neuropsychopharmacol 20:632–640

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y, Hosoi Y, Takekita Y, Mandelli L, Azuma J, Kinoshita T (2008) ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32:398–404

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Dourish CT, Curzon G (1987) Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. Eur J Pharmacol 134:265–274

    Article  PubMed  CAS  Google Scholar 

  • Kessler RC, Aguilar-Gaxiola S, Alonso J, Chatterji S, Lee S, Ormel J, Ustun TB, Wang PS (2009) The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol Psichiatr Soc 18:23–33

    PubMed  Google Scholar 

  • Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI, Taylor A, Xie HG, McKinsey J, Zhou S, Lan LB, Schuetz JD, Schuetz EG, Wilkinson GR (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 70:189–199

    Article  PubMed  CAS  Google Scholar 

  • Kingbäck M, Josefsson M, Karlsson L, Ahlner J, Bengtsson F, Kugelberg FC, Carlsson B (2010) Stereoselective determination of venlafaxine and its three demethylated metabolites in human plasma and whole blood by liquid chromatography with electrospray tandem mass spectrometric detection and solid phase extraction. J Pharm Biomed Anal 53:583–590

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum KM, Henken S, Hiemke C, Schmitt U (2008) Pharmacodynamic consequences of P-glycoprotein-dependent pharmacokinetics of risperidone and haloperidol in mice. Behav Brain Res 188:298–303

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum KM, Uhr M, Holthoewer D, Namendorf C, Pietrzik C, Hiemke C, Schmitt U (2010) Pharmacokinetics of acute and sub-chronic aripiprazole in P-glycoprotein deficient mice. Neuropharmacology 59:474–479

    Article  PubMed  CAS  Google Scholar 

  • Kroetz DL, Pauli-Magnus C, Hodges LM, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE, DeYoung J, Taylor T, Carlson EJ, Herskowitz I, Giacomini KM, Clark AG (2003) Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 13:481–494

    Article  PubMed  CAS  Google Scholar 

  • Kugelberg FC, Apelqvist G, Bengtsson F (2002) Effects of chronic citalopram treatment on central and peripheral spontaneous open-field behaviours in rats. Pharmacol Toxicol 90:303–310

    Article  PubMed  CAS  Google Scholar 

  • Kugelberg FC, Apelqvist G, Wikell C, Bengtsson F (2005) Open-field behavioural alterations in liver-impaired and sham-operated rats after acute exposure to the antidepressant venlafaxine. Basic Clin Pharmacol Toxicol 97:155–161

    Article  PubMed  CAS  Google Scholar 

  • Kugelberg FC, Apelqvist G, Carlsson B, Ahlner J, Bengtsson F (2006) Sustained citalopram treatment in experimental hepatic encephalopathy: effects on entrainment to the light-dark cycle and melatonin. Basic Clin Pharmacol Toxicol 99:80–88

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Garg R, Gaur V, Kumar P (2010) Venlafaxine involves nitric oxide modulatory mechanism in experimental model of chronic behavior despair in mice. Brain Res 1311:73–80

    Article  PubMed  CAS  Google Scholar 

  • Lagas JS, Vlaming ML, Schinkel AH (2009) Pharmacokinetic assessment of multiple ATP-binding cassette transporters: the power of combination knockout mice. Mol Interv 9:136–145

    Article  PubMed  CAS  Google Scholar 

  • Luurtsema G, Molthoff CF, Windhorst AD, Smit JW, Keizer H, Boellaard R, Lammertsma AA, Franssen EJ (2003) (R)- and (S)-[11C]verapamil as PET-tracers for measuring P-glycoprotein function: in vitro and in vivo evaluation. Nucl Med Biol 30:747–751

    Article  PubMed  CAS  Google Scholar 

  • Mayer U, Wagenaar E, Dorobek B, Beijnen JH, Borst P, Schinkel AH (1997) Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 100:2430–2436

    Article  PubMed  CAS  Google Scholar 

  • Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B (2007) Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 370:851–858

    Article  PubMed  Google Scholar 

  • Muth EA, Haskins JT, Moyer JA, Husbands GE, Nielsen ST, Sigg EB (1986) Antidepressant biochemical profile of the novel bicyclic compound Wy-45, 030, an ethyl cyclohexanol derivative. Biochem Pharmacol 35:4493–4497

    Article  PubMed  CAS  Google Scholar 

  • Muth EA, Haskins JT, Moyer JA, Andree TH, Husbands GEM (1991) Biochemical, neuropsychological, and behavioral effects of Wy-45, 233 and other identified metabolites of the antidepressant venlafaxine. Drug Dev Res 23:191–199

    Article  CAS  Google Scholar 

  • Nikisch G, Eap CB, Baumann P (2008) Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacol Res 58:344–347

    Article  PubMed  CAS  Google Scholar 

  • Nowakowska E, Kus K (2005) Antidepressant and memory affecting influence of estrogen and venlafaxine in ovariectomized rats. Arzneimittelforschung 55:153–159

    PubMed  CAS  Google Scholar 

  • Nowakowska E, Kus K, Chodera A (2003) Comparison of behavioural effects of venlafaxine and imipramine in rats. Arzneimittelforschung 53:237–242

    PubMed  CAS  Google Scholar 

  • Oganesian A, Shilling AD, Young-Sciame R, Tran J, Watanyar A, Azam F, Kao J, Leung L (2009) Desvenlafaxine and venlafaxine exert minimal in vitro inhibition of human cytochrome p450 and p-glycoprotein activities. Psychopharmacol Bull 42:47–63

    PubMed  Google Scholar 

  • Reis M, Lundmark J, Björk H, Bengtsson F (2002) Therapeutic drug monitoring of racemic venlafaxine and its main metabolites in an everyday clinical setting. Ther Drug Monit 24:545–553

    Article  PubMed  CAS  Google Scholar 

  • Reis M, Aamo T, Spigset O, Ahlner J (2009) Serum concentrations of antidepressant drugs in a naturalistic setting: compilation based on a large therapeutic drug monitoring database. Ther Drug Monit 31:42–56

    Article  PubMed  CAS  Google Scholar 

  • Rochat B, Baumann P, Audus KL (1999) Transport mechanisms for the antidepressant citalopram in brain microvessel endothelium. Brain Res 831:229–236

    Article  PubMed  CAS  Google Scholar 

  • Sandstrom R, Karlsson A, Lennernas H (1998) The absence of stereoselective P-glycoprotein-mediated transport of R/S-verapamil across the rat jejunum. J Pharm Pharmacol 50:729–735

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zijlmans JM, Fibbe WE, Borst P (1997) Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA 94:4028–4033

    Article  PubMed  CAS  Google Scholar 

  • Schmitt U, Hiemke C (1998) Strain differences in open-field and elevated plus-maze behavior of rats without and with pretest handling. Pharmacol Biochem Behav 59:807–811

    Article  PubMed  CAS  Google Scholar 

  • Stahl SM, Grady MM, Moret C, Briley M (2005) SNRIs: their pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr 10:732–747

    PubMed  Google Scholar 

  • Swiergiel AH, Dunn AJ (2007) Effects of interleukin-1beta and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacol Biochem Behav 86:651–659

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Owa T, Nishino T, Kamei C (2010) Assessing anxiolytic-like effects of selective serotonin reuptake inhibitors and serotonin-noradrenaline reuptake inhibitors using the elevated plus maze in mice. Methods Find Exp Clin Pharmacol 32:113–121

    PubMed  CAS  Google Scholar 

  • Tanabe M, Ieiri I, Nagata N, Inoue K, Ito S, Kanamori Y, Takahashi M, Kurata Y, Kigawa J, Higuchi S, Terakawa N, Otsubo K (2001) Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 297:1137–1143

    PubMed  CAS  Google Scholar 

  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 84:7735–7738

    Article  PubMed  CAS  Google Scholar 

  • Thiel CM, Muller CP, Huston JP, Schwarting RK (1999) High versus low reactivity to a novel environment: behavioural, pharmacological and neurochemical assessments. Neuroscience 93:243–251

    Article  PubMed  CAS  Google Scholar 

  • Uhr M, Grauer MT (2003) abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res 37:179–185

    Article  PubMed  Google Scholar 

  • Uhr M, Steckler T, Yassouridis A, Holsboer F (2000) Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology 22:380–387

    Article  PubMed  CAS  Google Scholar 

  • Uhr M, Grauer MT, Holsboer F (2003) Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry 54:840–846

    Article  PubMed  CAS  Google Scholar 

  • Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M, Dose T, Ebinger M, Rosenhagen M, Kohli M, Kloiber S, Salyakina D, Bettecken T, Specht M, Putz B, Binder EB, Muller-Myhsok B, Holsboer F (2008) Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57:203–209

    Article  PubMed  CAS  Google Scholar 

  • Wikell C, Apelqvist G, Hjorth S, Kullingsjö J, Bergqvist PBF, Bengtsson F (2002) Effects on drug disposition, brain monoamines and behavior after chronic treatment with the antidepressant venlafaxine in rats with experimental hepatic encephalopathy. Eur Neuropsychopharmacol 12:327–336

    Article  PubMed  CAS  Google Scholar 

  • WYETH (2009) Product Monograph - PRISTIQ® desvenlafaxine Extended-Release Tablets, Montreal, Canada. Submission Control No: 130257. Date of Revision: August 26, 2009.

Download references

Acknowledgments

This work was supported by grants from Östergötland County Council (LK), the German Research Foundation (CH, US; Hi 399/6-1), the Swedish Research Council (FB, JA, FCK; 2009-4740), and the National Board of Forensic Medicine in Sweden (FCK).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik C. Kugelberg.

Additional information

Ulrich Schmitt and Fredrik C. Kugelberg share the last authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, L., Hiemke, C., Carlsson, B. et al. Effects on enantiomeric drug disposition and open-field behavior after chronic treatment with venlafaxine in the P-glycoprotein knockout mice model. Psychopharmacology 215, 367–377 (2011). https://doi.org/10.1007/s00213-010-2148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2148-5

Keywords

Navigation