Skip to main content
Log in

The role of estrogen and testosterone in female rats in behavioral models of relevance to schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The sex steroid hormone, estrogen, may play a protective role in schizophrenia. We previously found that estrogen treatment inhibited serotonin-1A (5-HT1A) and dopamine D2 receptor-mediated disruptions of prepulse inhibition (PPI), a measure of sensorimotor gating which is deficient in schizophrenia.

Objectives

The present study aimed to further explore the role of sex steroid hormones in schizophrenia. Part 1 of this study examined whether estrogen could inhibit PPI disruption induced by the N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801. Part 2 investigated whether the functionally protective effect of estrogen occurs in another animal model of schizophrenia, amphetamine-induced locomotor hyperactivity. Part 3 compared our previous PPI findings in estrogen-treated rats, to treatment with testosterone.

Methods

Female Sprague–Dawley rats were ovariectomized (OVX) or sham-operated. Some OVX rats received silastic implants filled with either a low (E20) or high dose (E100) of estradiol, or a low (T5) or high dose (T20) of testosterone, for at least 2 weeks before behavioral testing.

Results

The disruption of PPI caused by MK-801 (0.1 mg/kg) was significantly reduced by treatment with estradiol (E20 and E100). However, estradiol treatment did not alter amphetamine-induced (0.25 and 0.5 mg/kg) locomotor hyperactivity, in terms of distance traveled, ambulation, or vertical counts. In contrast to estrogen, testosterone treatment did not affect disruption of PPI after administration of 8-OH-DPAT (0.5 mg/kg) or apomorphine (0.3 mg/kg). Testosterone treatment significantly enhanced the MK-801-induced (0.1 mg/kg) PPI disruption.

Conclusions

Estrogen is functionally protective against 5-HT1A-, dopamine D2-, and NMDA receptor-induced PPI disruptions, while testosterone treatment enhances NMDA receptor-mediated PPI disruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert DJ, Jonik RH, Walsh ML, Petrovic DM (1989) Testosterone supports hormone-dependent aggression in female rats. Physiol Behav 46:185–189

    Article  PubMed  CAS  Google Scholar 

  • Albert DJ, Jonik RH, Gorzalka BB, Newlove T, Webb B, Walsh ML (1991) Serum estradiol concentration required to maintain body weight, attractivity, proceptivity, and receptivity in the ovariectomized female rat. Physiol Behav 49:225–231

    Article  PubMed  CAS  Google Scholar 

  • Aleman A, Hijman R, de Haan EH, Kahn RS (1999) Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry 156:1358–1366

    PubMed  CAS  Google Scholar 

  • Aleman A, Bronk E, Kessels RP, Koppeschaar HP, van Honk J (2004) A single administration of testosterone improves visuospatial ability in young women. Psychoneuroendocrinology 29:612–617

    Article  PubMed  CAS  Google Scholar 

  • Alsene KM, Fallace K, Bakshi VP (2010) Ventral striatal noradrenergic mechanisms contribute to sensorimotor gating deficits induced by amphetamine. Neuropsychopharmacology 35:2346–2356

    Article  PubMed  CAS  Google Scholar 

  • Arad M, Weiner I (2010a) Contrasting effects of increased and decreased dopamine transmission on latent inhibition in ovariectomized rats and their modulation by 17beta-estradiol: an animal model of menopausal psychosis? Neuropsychopharmacology 35:1570–1582

    Article  CAS  Google Scholar 

  • Arad M, Weiner I (2010b) Sex-dependent antipsychotic capacity of 17beta-estradiol in the latent inhibition model: a typical antipsychotic drug in both sexes, atypical antipsychotic drug in males. Neuropsychopharmacology 35:2179–2192

    Article  CAS  Google Scholar 

  • Beratis S, Gabriel J, Hoidas S (1994) Age at onset in subtypes of schizophrenic disorders. Schizophr Bull 20:287–296

    PubMed  CAS  Google Scholar 

  • Bergemann N, Parzer P, Kaiser D, Maier-Braunleder S, Mundt C, Klier C (2008) Testosterone and gonadotropins but not estrogen associated with spatial ability in women suffering from schizophrenia: a double-blind, placebo-controlled study. Psychoneuroendocrinology 33:507–516

    Article  PubMed  CAS  Google Scholar 

  • Bortolato M, Frau R, Orru M, Bourov Y, Marrosu F, Mereu G, Devoto P, Gessa GL (2008) Antipsychotic-like properties of 5-alpha-reductase inhibitors. Neuropsychopharmacology 33:3146–3156

    Article  PubMed  CAS  Google Scholar 

  • Boye SM, Grant RJ, Clarke PB (2001) Disruption of dopaminergic neurotransmission in nucleus accumbens core inhibits the locomotor stimulant effects of nicotine and D-amphetamine in rats. Neuropharmacology 40:792–805

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  PubMed  CAS  Google Scholar 

  • Castle DJ, Abel K, Takei N, Murray RM (1995) Gender differences in schizophrenia: hormonal effect or subtypes? Schizophr Bull 21:1–12

    PubMed  CAS  Google Scholar 

  • Chavez C, Hollaus M, Scarr E, Pavey G, Gogos A, van den Buuse M (2010) The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study. Brain Res 1321:51–59

    Article  PubMed  CAS  Google Scholar 

  • Cyr M, Ghribi O, Thibault C, Morissette M, Landry M, Di Paolo T (2001) Ovarian steroids and selective estrogen receptor modulators activity on rat brain NMDA and AMPA receptors. Brain Res Brain Res Rev 37:153–161

    Article  PubMed  CAS  Google Scholar 

  • Dannan GA, Guengerich FP, Waxman DJ (1986) Hormonal regulation of rat liver microsomal enzymes. Role of gonadal steroids in programming, maintenance, and suppression of delta 4-steroid 5 alpha-reductase, flavin-containing monooxygenase, and sex-specific cytochromes P-450. J Biol Chem 261:10728–10735

    PubMed  CAS  Google Scholar 

  • de Olmos S, Bueno A, Bender C, Lorenzo A, de Olmos J (2008) Sex differences and influence of gonadal hormones on MK801-induced neuronal degeneration in the granular retrosplenial cortex of the rat. Brain Struct Funct 213:229–238

    Article  PubMed  Google Scholar 

  • Forgie ML, Stewart J (1994) Effect of prepubertal ovariectomy on amphetamine-induced locomotor activity in adult female rats. Horm Behav 28:241–260

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, Van den Buuse M (2003) Castration reduces the effect of serotonin-1A receptor stimulation on prepulse inhibition in rats. Behav Neurosci 117:1407–1415

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, Van den Buuse M (2004) Estrogen and progesterone prevent disruption of prepulse inhibition by the serotonin-1A receptor agonist 8-hydroxy-2-dipropylaminotetralin. J Pharmacol Exp Ther 309:267–274

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, Nathan PJ, Guille V, Croft RJ, Van den Buuse M (2006) Estrogen prevents 5-HT1A receptor-induced disruptions of prepulse inhibition in healthy women. Neuropsychopharmacology 31:885–889

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, Joshua N, Rossell SL (2010a) Use of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) to investigate group and gender differences in schizophrenia and bipolar disorder. Aust N Z J Psychiatry 44:220–229

    Article  Google Scholar 

  • Gogos A, Kwek P, Chavez C, van den Buuse M (2010b) Estrogen treatment blocks 8-hydroxy-2-dipropylaminotetralin- and apomorphine-induced disruptions of prepulse inhibition: involvement of dopamine D1 or D2 or serotonin 5-HT1A, 5-HT2A, or 5-HT7 receptors. J Pharmacol Exp Ther 333:218–227

    Article  CAS  Google Scholar 

  • Gore AC (2001) Gonadotropin-releasing hormone neurons, NMDA receptors, and their regulation by steroid hormones across the reproductive life cycle. Brain Res Brain Res Rev 37:235–248

    Article  PubMed  CAS  Google Scholar 

  • Häfner H, Riecher-Rossler A, An Der Heiden W, Maurer K, Fatkenheuer B, Loffler W (1993) Generating and testing a causal explanation of the gender difference in age at first onset of schizophrenia. Psychol Med 23:925–940

    Article  PubMed  Google Scholar 

  • Joyce JN, Montero E, Van Hartesveldt C (1984) Dopamine-mediated behaviors: characteristics of modulation by estrogen. Pharmacol Biochem Behav 21:791–800

    Article  PubMed  CAS  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    Article  PubMed  CAS  Google Scholar 

  • Kocoska-Maras L, Zethraeus N, Radestad AF, Ellingsen T, von Schoultz B, Johannesson M, Hirschberg AL (2011) A randomized trial of the effect of testosterone and estrogen on verbal fluency, verbal memory, and spatial ability in healthy postmenopausal women. Fertil Steril 95:152–157

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni J, Riedel A, de Castella AR, Fitzgerald PB, Rolfe TJ, Taffe J, Burger H (2001) Estrogen—a potential treatment for schizophrenia. Schizophr Res 48:137–144

    Article  PubMed  CAS  Google Scholar 

  • Kusljic S, Brosda J, Norman TR, Van den Buuse M (2005) Brain serotonin depletion by lesions of the median raphe nucleus enhances the psychotomimetic action of phencyclidine, but not dizocilpine (MK-801), in rats. Brain Res 1049:217–226

    Article  PubMed  CAS  Google Scholar 

  • Lecourtier L, Homayoun H, Tamagnan G, Moghaddam B (2007) Positive allosteric modulation of metabotropic glutamate 5 (mGlu5) receptors reverses N-methyl-d-aspartate antagonist-induced alteration of neuronal firing in prefrontal cortex. Biol Psychiatry 62:739–746

    Article  PubMed  CAS  Google Scholar 

  • Makanjuola RO, Ashcroft GW (1982) Behavioural effects of electrolytic and 6-hydroxydopamine lesions of the accumbens and caudate-putamen nuclei. Psychopharmacology (Berl) 76:33–40

    Article  CAS  Google Scholar 

  • Milsted A, Marcelo MC, Turner ME, Ely DL (1998) Female Wistar-Kyoto and SHR/y rats have the same genotype but different patterns of expression of renin and angiotensinogen genes. J Hypertens 16:823–828

    Article  PubMed  CAS  Google Scholar 

  • Moller MC, Bartfai AB, Radestad AF (2010) Effects of testosterone and estrogen replacement on memory function. Menopause 17:983–989

    Article  PubMed  Google Scholar 

  • Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    Article  PubMed  CAS  Google Scholar 

  • Riecher-Rossler A, Hafner H, Stumbaum M, Maurer K, Schmidt R (1994) Can estradiol modulate schizophrenic symptomatology? Schizophr Bull 20:203–214

    PubMed  CAS  Google Scholar 

  • Rubinow DR, Schmidt PJ, Roca CA (1998) Estrogen-serotonin interactions: implications for affective regulation. Biol Psychiatry 44:839–850

    Article  PubMed  CAS  Google Scholar 

  • Salokangas RK (1995) Gender and the use of neuroleptics in schizophrenia. Further testing of the oestrogen hypothesis. Schizophr Res 16:7–16

    Article  PubMed  CAS  Google Scholar 

  • Sanchez MG, Bourque M, Morissette M, Di Paolo T (2010) Steroids–dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16:e43–e71

    Article  PubMed  CAS  Google Scholar 

  • Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P, Gur RC (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry 51:124–131

    Article  PubMed  CAS  Google Scholar 

  • Seeman MV, Lang M (1990) The role of estrogens in schizophrenia gender differences. Schizophrenia Bull 16:185–194

    CAS  Google Scholar 

  • Shah S, Bell RJ, Savage G, Goldstat R, Papalia MA, Kulkarni J, Donath S, Davis SR (2006) Testosterone aromatization and cognition in women: a randomized, placebo-controlled trial. Menopause 13:600–608

    Article  PubMed  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199:331–388

    Article  CAS  Google Scholar 

  • Szymanski S, Lieberman JA, Alvir JM, Mayerhoff D, Loebel A, Geisler S, Chakos M, Koreen A, Jody D, Kane J, Woerner M, Cooper T (1995) Gender differences in onset of illness, treatment response, course, and biologic indexes in first-episode schizophrenic patients. Am J Psychiatry 152:698–703

    PubMed  CAS  Google Scholar 

  • Tamminga C (1999) Glutamatergic aspects of schizophrenia. Brit J Psychiatry 174:12–15

    Google Scholar 

  • Uphouse L (2000) Female gonadal hormones, serotonin, and sexual receptivity. Brain Res Brain Res Rev 33:242–257

    Article  PubMed  CAS  Google Scholar 

  • Van den Buuse M (2010) Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 36:246–270

    Article  PubMed  Google Scholar 

  • Van Hartesveldt C, Joyce JN (1986) Effects of estrogen on the basal ganglia. Neurosci Biobehav Rev 10:1–14

    Article  PubMed  Google Scholar 

  • Wan FJ, Swerdlow NR (1996) Sensorimotor gating in rats is regulated by different dopamine–glutamate interactions in the nucleus accumbens core and shell subregions. Brain Res 722:168–176

    Article  PubMed  CAS  Google Scholar 

  • Wilson JD (1996) Androgens. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW (eds) Goodman & Gilman's: the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 1441–1457

    Google Scholar 

  • Wisniewski AB, Nguyen TT, Dobs AS (2002) Evaluation of high-dose estrogen and high-dose estrogen plus methyltestosterone treatment on cognitive task performance in postmenopausal women. Horm Res 58:150–155

    Article  PubMed  CAS  Google Scholar 

  • Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the National Health and Medical Research Council of Australia in the form of a Project Grant (ID 509234), a Peter Doherty Fellowship (ID 435690 to AG), and a senior research fellowship (ID 435500 to MvdB); the J. & P. Clemenger Trust; and the Operational Infrastructure Support (OIS) from the Victorian State Government. All experiments in this study were in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (1990) set out by the National Health and Medical Research Council of Australia. There are no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gogos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogos, A., Kwek, P. & van den Buuse, M. The role of estrogen and testosterone in female rats in behavioral models of relevance to schizophrenia. Psychopharmacology 219, 213–224 (2012). https://doi.org/10.1007/s00213-011-2389-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2389-y

Keywords

Navigation