Skip to main content

Advertisement

Log in

SERT and NET occupancy by venlafaxine and milnacipran in nonhuman primates: a PET study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Serotonin and norepinephrine reuptake inhibitors (SNRIs) are antidepressants which have high affinity to both serotonin transporter (SERT) and norepinephrine transporter (NET). In studies in vitro, SNRIs have been reported to show a large variability in the affinity ratio between SERT and NET. For instance, the reported affinity ratio is about 30 for venlafaxine and 1.6 for milnacipran. In this study in nonhuman primates, we aimed to investigate the relationship between SERT and NET affinity by measuring the in vivo occupancy at both transporters of venlafaxine and milnacipran.

Methods

PET measurements with [11C]MADAM and [18F]FMeNER-D2 were performed in two female cynomolgus monkeys at baseline and after pretreatment with venlafaxine and milnacipran, respectively. Relationships between dose, plasma concentration, and transporter occupancy were evaluated by saturation analysis using a hyperbolic function. Binding affinity (Kdplasma) was expressed by the dose or plasma concentration at which 50 % of the transporter was occupied.

Results

SERT and NET occupancy by venlafaxine and milnacipran increased in a dose and plasma concentration-dependent manner. The Kdplasma ratio of SERT to NET was 1.9 for venlafaxine and 0.6 for milnacipran.

Conclusions

In this nonhuman primate PET study, the affinity in vivo for SERT and NET, respectively, was shown to be at a similar level for venlafaxine and milnacipran. Both drugs were found to produce balanced inhibition of SERT and NET binding. This observation is not consistent with previous in vitro binding data and illustrates the need to characterize antidepressants at in vivo condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bymaster FP, Dreshfield-Ahmad LJ, Threlkeld PG, Shaw JL, Thompson L, Nelson DL, Hemrick-Luecke SK, Wong DT (2001) Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacology 25:871–880

    Article  PubMed  CAS  Google Scholar 

  • Deecher DC, Beyer CE, Johnston G, Bray J, Shah S, Abou-Gharbia M, Andree TH (2006) Desvenlafaxine succinate: a new serotonin and norepinephrine reuptake inhibitor. J Pharmacol Exp Ther 318:657–665

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo C, Lichenstein S, Schaefer K, Dunn J, Marshall R, Organisak L, Kharidia J, Robertson B, Mann JJ, Parsey RV (2007) SEP-225289 serotonin and dopamine transporter occupancy: a PET study. J Nucl Med 52:1150–1155

    Article  Google Scholar 

  • Farde L, Eriksson L, Blomquist G, Halldin C (1989a) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET—a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231:258–261

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Nordstrom AL, Sedvall G (1989b) D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology (Berl) 99(Suppl):S28–S31

    Article  Google Scholar 

  • Gex-Fabry M, Balant-Gorgia AE, Balant LP, Rudaz S, Veuthey JL, Bertschy G (2004) Time course of clinical response to venlafaxine: relevance of plasma level and chirality. Eur J Clin Pharmacol 59:883–891

    Article  PubMed  CAS  Google Scholar 

  • Halldin C, Lundberg J, Sovago J, Gulyas B, Guilloteau D, Vercouillie J, Emond P, Chalon S, Tarkiainen J, Hiltunen J, Farde L (2005) [(11)C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse 58:173–183

    Article  PubMed  CAS  Google Scholar 

  • Hendset M, Haslemo T, Rudberg I, Refsum H, Molden E (2006) The complexity of active metabolites in therapeutic drug monitoring of psychotropic drugs. Pharmacopsychiatry 39:121–127

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H, Yoshida K, Takahashi H, Naito S, Kamata M, Ito K, Sato K, Tsukamoto K, Shimizu T, Nakanishi M, Hishikawa Y (2003) Milnacipran plasma levels and antidepressant response in Japanese major depressive patients. Hum Psychopharmacol 18:255–259

    Article  PubMed  CAS  Google Scholar 

  • Hynninen VV, Olkkola KT, Bertilsson L, Kurkinen K, Neuvonen PJ, Laine K (2008) Effect of terbinafine and voriconazole on the pharmacokinetics of the antidepressant venlafaxine. Clin Pharmacol Ther 83:342–348

    Article  PubMed  Google Scholar 

  • Karlsson P, Farde L, Halldin C, Swahn CG, Sedvall G, Foged C, Hansen KT, Skrumsager B (1993) PET examination of [11C]NNC 687 and [11C]NNC 756 as new radioligands for the D1-dopamine receptor. Psychopharmacology (Berl) 113:149–156

    Article  CAS  Google Scholar 

  • Koch S, Hemrick-Luecke SK, Thompson LK, Evans DC, Threlkeld PG, Nelson DL, Perry KW, Bymaster FP (2003) Comparison of effects of dual transporter inhibitors on monoamine transporters and extracellular levels in rats. Neuropharmacology 45:935–944

    Article  PubMed  CAS  Google Scholar 

  • Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  • Lee CM, Farde L (2006) Using positron emission tomography to facilitate CNS drug development. Trends Pharmacol Sci 27:310–316

    Article  PubMed  CAS  Google Scholar 

  • Machado M, Einarson TR (2010) Comparison of SSRIs and SNRIs in major depressive disorder: a meta-analysis of head-to-head randomized clinical trials. J Clin Pharm Ther 35:177–188

    Article  PubMed  CAS  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161:826–835

    Article  PubMed  Google Scholar 

  • Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM (1996) Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 41:149–156

    Article  PubMed  CAS  Google Scholar 

  • Rabiner EA, Gunn RN, Wilkins MR, Sedman E, Grasby PM (2002) Evaluation of EMD 128 130 occupancy of the 5-HT1A and the D2 receptor: a human PET study with [11C]WAY-100635 and [11C]raclopride. J Psychopharmacol 16:195–199

    Article  PubMed  CAS  Google Scholar 

  • Schou M, Halldin C, Pike VW, Mozley PD, Dobson D, Innis RB, Farde L, Hall H (2005) Post-mortem human brain autoradiography of the norepinephrine transporter using (S, S)-[18 F]FMeNER-D2. Eur Neuropsychopharmacol 15:517–520

    Article  PubMed  CAS  Google Scholar 

  • Schou M, Halldin C, Sovago J, Pike VW, Hall H, Gulyas B, Mozley PD, Dobson D, Shchukin E, Innis RB, Farde L (2004) PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse 53:57–67

    Article  PubMed  CAS  Google Scholar 

  • Sekine M, Arakawa R, Ito H, Okumura M, Sasaki T, Takahashi H, Takano H, Okubo Y, Halldin C, Suhara T (2010) Norepinephrine transporter occupancy by antidepressant in human brain using positron emission tomography with (S, S)-[18 F]FMeNER-D2. Psychopharmacology (Berl) 210:331–336

    Article  CAS  Google Scholar 

  • Seneca N, Gulyas B, Varrone A, Schou M, Airaksinen A, Tauscher J, Vandenhende F, Kielbasa W, Farde L, Innis RB, Halldin C (2006) Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S, S)-[18 F]FMeNER-D2. Psychopharmacology (Berl) 188:119–127

    Article  CAS  Google Scholar 

  • Swanson LW, Hartman BK (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J Comp Neurol 163:467–505

    Article  PubMed  CAS  Google Scholar 

  • Takano A, Gulyas B, Varrone A, Maguire RP, Halldin C (2009) Saturated norepinephrine transporter occupancy by atomoxetine relevant to clinical doses: a rhesus monkey study with (S, S)-[(18)F]FMeNER-D (2). Eur J Nucl Med Mol Imaging 36:1308–1314

    Article  PubMed  CAS  Google Scholar 

  • Takano A, Nag S, Gulyas B, Halldin C, Farde L (2011) NET occupancy by clomipramine and its active metabolite, desmethylclomipramine, in non-human primates in vivo. Psychopharmacology (Berl) 216:279–286

    Article  CAS  Google Scholar 

  • Takano A, Suzuki K, Kosaka J, Ota M, Nozaki S, Ikoma Y, Tanada S, Suhara T (2006) A dose-finding study of duloxetine based on serotonin transporter occupancy. Psychopharmacology (Berl) 185:395–399

    Article  CAS  Google Scholar 

  • Thase ME (2008) Are SNRIs more effective than SSRIs? A review of the current state of the controversy. Psychopharmacol Bull 41:58–85

    PubMed  Google Scholar 

  • Troy SM, Lucki I, Peirgies AA, Parker VD, Klockowski PM, Chiang ST (1995) Pharmacokinetic and pharmacodynamic evaluation of the potential drug interaction between venlafaxine and diazepam. J Clin Pharmacol 35:410–419

    PubMed  CAS  Google Scholar 

  • Varrone A, Sjoholm N, Eriksson L, Gulyas B, Halldin C, Farde L (2009) Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging 36:1639–1650

    Article  PubMed  Google Scholar 

  • Watson (2000) New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47:1587–1594

    Article  Google Scholar 

  • Zeng Z, Chen TB, Miller PJ, Dean D, Tang YS, Sur C, Williams DL Jr (2006) The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites. Nucl Med Biol 33:555–563

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the members of the Karolinska PET group for their assistance in the PET experiments, including a special thanks to Gudrun Nylen for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Takano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takano, A., Halldin, C. & Farde, L. SERT and NET occupancy by venlafaxine and milnacipran in nonhuman primates: a PET study. Psychopharmacology 226, 147–153 (2013). https://doi.org/10.1007/s00213-012-2901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2901-z

Keywords

Navigation