Skip to main content

Advertisement

Log in

Behavioral effects of dopamine receptor inactivation during the adolescent period: age-dependent changes in dorsal striatal D2High receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine (DA) receptor inactivation produces opposing behavioral effects across ontogeny. For example, inactivating DA receptors in the dorsal striatum attenuates DA agonist-induced behaviors of adult rats, while potentiating the locomotor activity of preweanling rats.

Objective

The purpose of this study was to determine if DA receptor inactivation potentiates the DA agonist-induced locomotor activity of adolescent rats and whether alterations in D2High receptors are responsible for this effect.

Methods

In the behavioral experiment, the irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) or its vehicle (100 % dimethyl sulfoxide, DMSO) was bilaterally infused into the dorsal striatum on postnatal day (PD) 39. On PD 40, adolescent rats were given intrastriatal infusions of the DA agonist R(−)-propylnorapomorphine (NPA) or vehicle and locomotor activity was measured for 40 min. In the receptor binding experiment, rats received IP injections of EEDQ or DMSO (1:1 (v/v) in distilled water) on PD 17, PD 39, or PD 84. One day later, striatal samples were taken and subsequently assayed for D2-specific binding and D2High receptors using [3H]-domperidone.

Results

Unlike what is observed during the preweanling period, EEDQ attenuated the NPA-induced locomotor activity of adolescent rats. EEDQ reduced D2 receptor levels in the dorsal striatum of all age groups while increasing the proportion of D2High receptors. Regardless of pretreatment condition (i.e., DMSO or EEDQ), preweanling rats had a greater percentage of D2High receptors than adolescent or adult rats.

Conclusions

DA receptor inactivation affects the behaviors of preweanling and older rats differently. The DA supersensitivity exhibited by EEDQ-treated preweanling rats may result from an excess of D2High receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriani W, Laviola G (2000) A unique hormonal and behavioral hyporesponsivity to both forced novelty and d-amphetamine in periadolescent mice. Neuropharmacology 39:334–346

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity. Neurosci Biobehav Rev 27:3–18

    Article  PubMed  Google Scholar 

  • Andersen SL, Teicher MH (2000) Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev 24:137–141

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Rutstein M, Benzo JM, Hostetter JC Jr, Teicher MH (1997) Sex differences in dopamine receptor overproduction and elimination. Neuroreport 8:1495–1498

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Hyttel J (1984) Postsynaptic dopamine agonistic effects of 3-PPP enantiomers revealed by bilateral 6-hydroxy-dopamine lesions and by chronic reserpine treatment in rats. J Neural Transm 60:205–223

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Hyttel J, Meier E (1988) Inactivation of dopamine D-1 or D-2 receptors differentially inhibits stereotypies induced by dopamine agonists in rats. Eur J Pharmacol 155:37–47

    Article  PubMed  CAS  Google Scholar 

  • Bazzett TJ, Becker JB (1994) Sex differences in the rapid and acute effects of estrogen on striatal D2 dopamine receptor binding. Brain Res 637:163–172

    Article  PubMed  CAS  Google Scholar 

  • Bolanos CA, Glatt SJ, Jackson D (1998) Subsensitivity to dopaminergic drugs in periadolescent rats: a behavioral and neurochemical analysis. Dev Brain Res 111:25–33

    Article  CAS  Google Scholar 

  • Bordi F, Carr KD, Meller E (1989) Stereotypies elicited by injection of N-propylnorapomorphine into striatal subregions and nucleus accumbens. Brain Res 489:205–215

    Article  PubMed  CAS  Google Scholar 

  • Broaddus WC, Bennett JP Jr (1990) Postnatal development of striatal dopamine function. I. An examination of D1 and D2 receptors, adenylate cyclase regulation and presynaptic dopamine markers. Dev Brain Res 52:265–271

    Article  CAS  Google Scholar 

  • Brown RW, Hughes BA, Hughes AB, Sheppard AB, Perna MK, Ragsdale WL, Roeding RL, Pond BB (2012) Sex and dose-related differences in methylphenidate adolescent locomotor sensitization and effects on brain-derived neurotrophic factor. J Psychopharmacol 26:1480–1488

    Article  PubMed  Google Scholar 

  • Brus R, Krzemiński T, Piguła J (1983) Cataleptogenic effect of haloperidol, chlorpromazine and morphine in developing rats. Pol J Pharmacol Pharm 35:377–382

    PubMed  CAS  Google Scholar 

  • Cameron DL, Crocker AD (1988) Alkylation of striatal dopamine receptors abolishes stereotyped behavior but has no effect on dopamine adenylate cyclase activity. Neurosci Lett 90:165–171

    Article  PubMed  CAS  Google Scholar 

  • Campbell A, Baldessarini RJ (1981) Effects of maturation and aging on behavioral responses to haloperidol in the rat. Psychopharmacology (Berl) 73:219–222

    Article  CAS  Google Scholar 

  • Campbell A, Baldessarini RJ, Teicher MH (1988) Decreasing sensitivity to neuroleptic agents in developing rats; evidence for a pharmacodynamic factor. Psychopharmacology (Berl) 94:46–51

    Article  CAS  Google Scholar 

  • Carvalho RC, Fukushiro DF, Helfer DC, Callegaro-Filho D, Trombin TF, Zanlorenci LH, Sanday L, Silva RH, Frussa-Filho R (2009) Long-term haloperidol treatment (but not risperidone) enhances addiction-related behaviors in mice: role of dopamine D2 receptors. Addict Biol 14:283–293

    Article  PubMed  CAS  Google Scholar 

  • Caster JM, Walker QD, Kuhn CM (2005) Enhanced behavioral response to repeated-dose cocaine in adolescent rats. Psychopharmacology (Berl) 183:218–225

    Article  CAS  Google Scholar 

  • Caster JM, Walker QD, Kuhn CM (2007) A single high dose of cocaine induces differential sensitization to specific behaviors across adolescence. Psychopharmacology (Berl) 193:247–260

    Article  CAS  Google Scholar 

  • Collins SL, Izenwasser S (2002) Cocaine differentially alters behavior and neurochemistry in periadolescent versus adult rats. Dev Brain Res 138:27–34

    Article  CAS  Google Scholar 

  • Cory-Slechta DA, Brockel BJ, O'Mara DJ (2002) Lead exposure and dorsomedial striatum mediation of fixed interval schedule-controlled behavior. Neurotoxicology 23:313–327

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Campochiaro P (1976) Ontogenesis of dopaminergic–cholinergic interactions in the rat striatum: a neurochemical study. J Neurochem 27:673–678

    Article  PubMed  CAS  Google Scholar 

  • Crawford CA, McDougall SA, Rowlett JK, Bardo MT (1992) Depletion of dopamine binding sites and dopamine levels and changes in dihydroxyphenylacetic acid levels in the 17- and 90-day-old rat striatum after irreversible receptor antagonism. Neurosci Lett 137:265–269

    Article  PubMed  CAS  Google Scholar 

  • Crawford CA, Rowlett JK, McDougall SA, Bardo MT (1994) Age-dependent differences in the rate of recovery of striatal dopamine D1 and D2 receptors after inactivation with EEDQ. Eur J Pharmacol 252:225–231

    Article  PubMed  CAS  Google Scholar 

  • Crawford CA, Akopian G, Ring J, Jakowec MW, Petzinger GM, Andersen JK, Vittozzi-Wong P, Wang K, Farley CM, Charntikov S, Mitroi D, Beal MF, Chow R, Walsh JP (2011) Acute and long-term response of dopamine nigrostriatal synapses to a single, low-dose episode of 3-nitropropionic acid-mediated chemical hypoxia. Synapse 65:339–350

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Der-Ghazarian T, Gutierrez A, Varela FA, Herbert MS, Amodeo LR, Charntikov S, Crawford CA, McDougall SA (2012) Dopamine receptor inactivation in the caudate-putamen differentially affects the behavior of preweanling and adult rats. Neuroscience 226:427–440

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Der-Ghazarian T, Widarma CB, Gutierrez A, Amodeo LR, Valentine JM, Humphrey DE, Gonzalez AE, Crawford CA, McDougall SA (2013) Dopamine receptor inactivation in the caudate-putamen potentiates dopamine agonist-induced locomotor activity in preweanling rats: role of the D2 receptor. Psychopharmacology (Berl). doi:10.1007/s00213-013-3280-9

    Google Scholar 

  • Farley CM, Baella SA, Wacan JJ, Crawford CA, McDougall SA (2006) Pre- and postsynaptic actions of a partial D2 receptor agonist in reserpinized young rats: longevity of agonistic effects. Brain Res 1124:37–44

    Article  PubMed  CAS  Google Scholar 

  • Festa ED, Russo SJ, Gazi FM, Niyomchai T, Kemen LM, Lin SN, Foltz R, Jenab S, Quinones-Jenab V (2004) Sex differences in cocaine-induced behavioral responses, pharmacokinetics, and monoamine levels. Neuropharmacology 46:672–687

    Article  PubMed  CAS  Google Scholar 

  • Frantz KJ, Van Hartesveldt C (1999) The locomotor effects of quinpirole in rats depend on age and gender. Pharmacol Biochem Behav 64:821–826

    Article  PubMed  CAS  Google Scholar 

  • Frantz KJ, O'Dell LE, Parsons LH (2006) Behavioral and neurochemical responses to cocaine in periadolescent and adult rats. Neuropsychopharmacology 32:625–637

    Article  PubMed  CAS  Google Scholar 

  • Giorgi O, Biggio G (1990a) Selective unilateral inactivation of striatal D1 and D2 dopamine receptor subtypes by EEDQ: turning behavior elicited by D2 dopamine receptor agonists. Brain Res 533:53–59

    Article  PubMed  CAS  Google Scholar 

  • Giorgi O, Biggio G (1990b) Unilateral inactivation of dopamine receptors after intrastriatal injection of N-ethoxy-carbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ): a novel rotational model to investigate dopamine receptor interactions. Pharmacol Biochem Behav 35:877–884

    Article  PubMed  CAS  Google Scholar 

  • Giorgi O, De Montis G, Porceddu ML, Mele S, Calderini G, Toffano G, Biggio G (1987) Developmental and age-related changes in D1-dopamine receptors and dopamine content in the rat striatum. Dev Brain Res 35:283–290

    Article  CAS  Google Scholar 

  • Gnanalingham KK, Hunter AJ, Jenner P, Marsden CD (1994) An autoradiographic study of the differential effects of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on striatal and extrastriatal D-1 and D-2 dopamine receptors in the rat. Neuropharmacology 33:647–655

    Article  PubMed  CAS  Google Scholar 

  • Hemsley KM, Crocker AD (2001) Changes in muscle tone are regulated by D1 and D2 dopamine receptors in the ventral striatum and D1 receptors in the substantia nigra. Neuropsychopharmacology 25:514–526

    Article  PubMed  CAS  Google Scholar 

  • Huynh H, Feldt LS (1976) Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs. J Educ Stat 1:69–82

    Article  Google Scholar 

  • Kettle CJ, Cheetham SC, Martin KF, Prow MR, Heal DJ (1999) The effects of the peptide-coupling agent, EEDQ, on 5-HT2A receptor binding and function in rat frontal cortex. Neuropharmacology 38:1421–1430

    Article  PubMed  CAS  Google Scholar 

  • Kula NS, George T, Baldessarini RJ (1992) Rate of recovery of D1 and D2 dopaminergic receptors in young vs. adult rat striatal tissue following alkylation with ethoxycarbonyl-ethoxy-dihydroquinoline (EEDQ). Dev Brain Res 66:286–289

    Article  CAS  Google Scholar 

  • Kuperstein F, Eilam R, Yavin E (2008) Altered expression of key dopaminergic regulatory proteins in the postnatal brain following perinatal n-3 fatty acid dietary deficiency. J Neurochem 106:662–671

    Article  PubMed  CAS  Google Scholar 

  • Lahti RA, Tamminga CA (1999) Effect of amphetamine, α-methyl-p-tyrosine (α-MPT) and antipsychotic agents on dopamine D2-type receptor occupancy in rats. Prog Neuropsychopharmacol Biol Psychiatry 23:1277–1283

    Article  PubMed  CAS  Google Scholar 

  • Laviola G, Adriani W, Terranova ML, Gerra G (1999) Psychobiological risk factors for vulnerability to psychostimulants in human adolescents and animal models. Neurosci Biobehav Rev 23:993–1010

    Article  PubMed  CAS  Google Scholar 

  • Leff SE, Gariano R, Creese I (1984) Dopamine receptor turnover rates in rat striatum are age-dependent. Proc Natl Acad Sci U S A 81:3910–3914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lepekhina LM, Tsitsurina EA (2007) Stereotyped behavior in the ontogeny of rats. Bull Exp Biol Med 144:349–351

    Article  PubMed  CAS  Google Scholar 

  • Levant B (1995) Differential sensitivity of [3H]7-OH-DPAT-labeled binding sites in rat brain to inactivation by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Brain Res 698:146–154

    Article  PubMed  CAS  Google Scholar 

  • McDougall SA, Crawford CA, Nonneman AJ (1992) Effects of irreversible dopamine receptor inactivation on locomotor activity and grooming in the 17- and 90-day-old rat. Psychopharmacology (Berl) 106:502–510

    Article  CAS  Google Scholar 

  • McDougall SA, Crawford CA, Nonneman AJ (1993) Behavioral effects of selective and nonselective dopamine agonists on young rats after irreversible antagonism of D1 and/or D2 receptors. Psychopharmacology (Berl) 111:225–232

    Article  CAS  Google Scholar 

  • Meller E, Bordi F, Bohmaker K (1989) Behavioral recovery after irreversible inactivation of D-1 and D-2 dopamine receptors. Life Sci 44:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Mestlin M, McDougall SA (1993) Ontogenetic differences in the effects of EEDQ on dopamine-mediated behaviors. Pharmacol Biochem Behav 45:797–802

    Article  PubMed  CAS  Google Scholar 

  • Milesi-Hallé A, Hendrickson HP, Laurenzana EM, Gentry WB, Owens SM (2005) Sex- and dose-dependency in the pharmacokinetics and pharmacodynamics of (+)-methamphetamine and its metabolite (+)-amphetamine in rats. Toxicol Appl Pharmacol 209:203–213

    Article  PubMed  CAS  Google Scholar 

  • Miller LG, Lumpkin M, Galpern WR, Greenblatt DJ, Shader RI (1991) Modification of γ-aminobutyric acidA, receptor binding and function by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline in vitro and in vivo: effects of aging. J Neurochem 56:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Moody CA, Spear LP (1992) Ontogenetic differences in the psychopharmacological responses to separate and combined stimulation of D1 and D2 dopamine receptors during the neonatal to weanling age period. Psychopharmacology (Berl) 106:161–168

    Article  CAS  Google Scholar 

  • Murrin LC, Zeng W (1986) Postnatal ontogeny of dopamine D2 receptors in rat striatum. Biochem Pharmacol 35:1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Murrin LC, Zeng W (1990) Ontogeny of dopamine D1 receptors in rat forebrain: a quantitative autoradiographic study. Dev Brain Res 57:7–13

    Article  CAS  Google Scholar 

  • National Research Council (2010) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington

    Google Scholar 

  • Norman AB, Eubanks JH, Creese I (1989) Irreversible and quaternary muscarinic antagonists discriminate multiple muscarinic receptor binding sites in rat brain. J Pharmacol Exp Ther 248:1116–1122

    PubMed  CAS  Google Scholar 

  • Parylak SL, Caster JM, Walker QD, Kuhn CM (2008) Gonadal steroids mediate the opposite changes in cocaine-induced locomotion across adolescence in male and female rats. Pharmacol Biochem Behav 89:314–323

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain: in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Rao PA, Molinoff PB, Joyce JN (1991) Ontogeny of dopamine D1 and D2 receptor subtypes in rat basal ganglia: quantitative autoradiographic study. Dev Brain Res 60:161–177

    Article  CAS  Google Scholar 

  • Ribas C, Miralles A, Escribá PV, García-Sevilla JA (1998) Effects of the alkylating agent EEDQ on regulatory G proteins and recovery of agonist and antagonist α2-adrenoceptor binding sites in rat brain. Eur J Pharmacol 351:145–154

    Article  PubMed  CAS  Google Scholar 

  • Sallés J, Wallace MA, Fain JN (1993) Differential effects of alkylating agents on the multiple muscarinic receptor subtypes linked to activation of phospholipase C by carbachol in rat brain cortical membranes. J Pharmacol Exp Ther 264:521–529

    PubMed  Google Scholar 

  • Schindler CW, Carmona GN (2002) Effects of dopamine agonists and antagonists on locomotor activity in male and female rats. Pharmacol Biochem Behav 72:857–863

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (2008) Dopamine D2(High) receptors moderately elevated by bifeprunox and aripiprazole. Synapse 62:902–908

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Weinshenker D, Quirion R, Srivastava LK, Bhardwaj SK, Grandy DK, Premont RT, Sotnikova TD, Boksa P, El-Ghundi M, O'Dowd BF, George SR, Perreault ML, Männistö PT, Robinson S, Palmiter RD, Tallerico T (2005) Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proc Natl Acad Sci U S A 102:3513–3518

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spear LP (1979) The use of psychopharmacological procedures to analyse the ontogeny of learning and retention: issues and concerns. In: Spear NE, Campbell BA (eds) Ontogeny of learning and memory. Lawrence Erlbaum Associates, Hillsdale, pp 135–156

    Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  PubMed  CAS  Google Scholar 

  • Spear LP, Brake SC (1983) Periadolescence: age-dependent behavior and psychopharmacological responsivity in rats. Dev Psychobiol 16:83–109

    Article  PubMed  CAS  Google Scholar 

  • Tarazi FI, Baldessarini RJ (2000) Comparative postnatal development of dopamine D1, D2 and D4 receptors in rat forebrain. Int J Dev Neurosci 18:29–37

    Article  PubMed  CAS  Google Scholar 

  • Tarazi FI, Tomasini EC, Baldessarini RJ (1998) Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neurosci Lett 254:21–24

    Article  PubMed  CAS  Google Scholar 

  • Teicher MH, Andersen SL, Hostetter JC Jr (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev Brain Res 89:167–172

    Article  CAS  Google Scholar 

  • Trovero F, Hervé D, Blanc G, Glowinski J, Tassin JP (1992) In vivo partial inactivation of dopamine D1 receptors induces hypersensitivity of cortical dopamine-sensitive adenylate cyclase: permissive role of α1-adrenergic receptors. J Neurochem 59:331–337

    Article  PubMed  CAS  Google Scholar 

  • Truong JG, Wilkins DG, Baudys J, Crouch DJ, Johnson-Davis KL, Gibb JW, Hanson GR, Fleckenstein AE (2005) Age-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity. J Pharmacol Exp Ther 314:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Vasilev V, Veskov R, Janać B, Rakic Lj, Stojiljković M (2003) Age-related differences in MK-801- and amphetamine-induced locomotor and stereotypic activities of rats. Neurobiol Aging 24:715–723

    Article  PubMed  CAS  Google Scholar 

  • Vinod KY, Subhash MN, Srinivas BN (2001) Differential protection and recovery of 5-HT1A receptors from N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) inactivation in regions of rat brain. Neurochem Res 26:113–120

    Article  PubMed  CAS  Google Scholar 

  • Walker QD, Morris SE, Arrant AE, Nagel JM, Parylak S, Zhou G, Caster JM, Kuhn CM (2010) Dopamine uptake inhibitors but not dopamine releasers induce greater increases in motor behavior and extracellular dopamine in adolescent rats than in adult male rats. J Pharmacol Exp Ther 335:124–132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zorrilla EP (1997) Multiparous species present problems (and possibilities) to developmentalists. Dev Psychobiol 30:141–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIMH research grant MH102930 (SAM) and NIGMS training grant GM083883 (AEG).

Conflict of interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanders A. McDougall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDougall, S.A., Valentine, J.M., Gonzalez, A.E. et al. Behavioral effects of dopamine receptor inactivation during the adolescent period: age-dependent changes in dorsal striatal D2High receptors. Psychopharmacology 231, 1637–1647 (2014). https://doi.org/10.1007/s00213-013-3355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3355-7

Keywords

Navigation