Skip to main content
Log in

Behavioral effects of glucocorticoids during the first exposures to the forced swim stress

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Glucocorticoids facilitate coping with stress, but their high levels have been also implicated in mood disorders. Due to this duality, the role of glucocorticoid signaling in the development of the first episodes of stress-induced depression remains unclear.

Objectives

To address this issue, effects of the glucocorticoid signal modulation on depressive-like behavior during pretest and test Porsolt swim sessions were examined.

Methods

Metyrapone (MET; 150 mg/kg, i.p.) was injected 3 h before pretest to block stress-induced increase in corticosterone levels. Dexamethasone (DEX; 0.2 mg/kg, s.c.) was applied to MET-treated rats 1 h before both pretest and test sessions. In addition to behavior during these sessions, glucocorticoid receptor (GR) expression was analyzed by immunohistochemistry 2 h after the second swim.

Results

In pretest, MET-treated rats exhibited increased latency to immobility and shortened immobility. DEX reversed the behavioral effects of MET in the pretest. In the test, animals from MET + DEX group unexpectedly exhibited an antidepressant-like behavior. Swim stress increased GR expression in the frontal cortex irrespective of the pharmacological treatment. A significant elevation in GR expression was found in the prefrontal cortex (PFC) of stressed MET + DEX-treated rats and in the PFC of unstressed rats 6 h after injection of DEX alone.

Conclusion

The data suggest that the increase in glucocorticoid levels under swim stress during pretest directly contributes to the development of the immobility response. Transition of DEX effect from prodepressant in the pretest to an antidepressant in the test was associated with the elevation in the PFC GR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alboni S, Tascedda F, Corsini D, Benatti C, Caggia F, Capone G, Barden N, Blom JM, Brunello N (2011) Stress induces altered CRE/CREB pathway activity and BDNF expression in the hippocampus of glucocorticoid receptor-impaired mice. Neuropharmacol 60:1337–46

    Article  CAS  Google Scholar 

  • Arana GW, Santos AB, Laraia MT, McLeod-Bryant S, Beale MD, Rames LJ, Roberts JM, Dias JK, Molloy M (1995) Dexamethasone for the treatment of depression: a randomized, placebo-controlled, double-blind trial. Am J Psychiatry 152:265–7

    Article  PubMed  CAS  Google Scholar 

  • Báez M, Volosin M (1994) Corticosterone influences forced swim-induced immobility. Pharmacol Biochem Behav 49:729–36

    Article  PubMed  Google Scholar 

  • Berry A, Bellisario V, Capoccia S, Tirassa P, Calza A, Alleva E, Cirulli F (2012) Social deprivation stress is a triggering factor for the emergence of anxiety- and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6J mice. Psychoneuroendocrinology 37:762–72

    Article  PubMed  CAS  Google Scholar 

  • Brown ES, Vera E, Frol AB, Woolsto DJ, Johnson B (2007) Effects of chronic prednisone therapy on mood and memory. J Affect Disord 99:279–83

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Canini F, Brahim S, Drouet JB, Michel V, Alonso A, Buguet A, Cespuglio R (2009) Metyrapone decreases locomotion acutely. Neurosci Lett 457:41–4

    Article  PubMed  CAS  Google Scholar 

  • Caudal D, Jay TM, Godsil BP (2014) Behavioral stress induces regionally-distinct shifts of brain mineralocorticoid and glucocorticoid receptor levels. Front Behav Neurosci 29:8–19

    Google Scholar 

  • Chaouloff F (2000) Serotonin, stress and corticoids. J Psychopharmacol 14:139–51

    Article  PubMed  CAS  Google Scholar 

  • Checkley S (1996) The neuroendocrinology of depression and chronic stress. Br Med Bull 52:597–617

    Article  PubMed  CAS  Google Scholar 

  • Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 39:112–9

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Valentino RJ, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29:547–69

    Article  PubMed  CAS  Google Scholar 

  • Datson NA, van den Oever JM, Korobko OB, Magarinos AM, de Kloet ER, McEwen BS (2013) Previous history of chronic stress changes the transcriptional response to glucocorticoid challenge in the dentate gyrus region of the male rat hippocampus. Endocrinol 154:3261–72

    Article  CAS  Google Scholar 

  • de Kloet ER (1997) Why dexamethasone poorly penetrates in brain. Stress 2:13–20

    Article  PubMed  Google Scholar 

  • de Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  • de Kloet ER, Derijk RH, Meijer OC (2007) Therapy insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression? Nat Clin Pract Endocrinol Metab 3:168–79

    Article  PubMed  CAS  Google Scholar 

  • Dinan TG, Lavelle E, Cooney J, Burnett F, Scott L, Dash A, Thakore J, Berti C (1997) Dexamethasone augmentation in treatment-resistant depression. Acta Psychiatr Scand 95:58–61

    Article  PubMed  CAS  Google Scholar 

  • Drakulić D, Veličković N, Stanojlović M, Grković I, Mitrović N, Lavrnja I, Horvat A (2013) Low-dose dexamethasone treatment promotes the pro-survival signalling pathway in the adult rat prefrontal cortex. J Neuroendocrinol 25:605–16

    Article  PubMed  CAS  Google Scholar 

  • Drouet JB, Michel V, Peinnequin A, Alonso A, Fidier N, Maury R, Buguet A, Cespuglio R, Canini F (2010) Metyrapone blunts stress-induced hyperthermia and increased locomotor activity independently of glucocorticoids and neurosteroids. Psychoneuroendocrinology 35:1299–310

    Article  PubMed  CAS  Google Scholar 

  • Du J, McEwen B, Manji HK (2009) Glucocorticoid receptors modulate mitochondrial function: a novel mechanism for neuroprotection. Commun Integr Biol 2:350–2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dygalo NN, Kalinina TS, Bulygina VV, Shishkina GT (2012) Increased expression of the anti-apoptotic protein Bcl-xL in the brain is associated with resilience to stress-induced depression-like behavior. Cell Mol Neurobiol 32:767–76

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa T, Soya H, Fukuoka H, Alam KS, Yoshizato H, McEwen BS, Nakashima K (2000) A biphasic regulation of receptor mRNA expressions for growth hormone, glucocorticoid and mineralocorticoid in the rat dentate gyrus during acute stress. Brain Res 874:186–93

    Article  PubMed  CAS  Google Scholar 

  • Gascoyne DM, Kypta RM, Vivanco MM (2003) Glucocorticoids inhibit apoptosis during fibrosarcoma development by transcriptionally activating Bcl-xL. J Biol Chem 278:18022–9

    Article  PubMed  CAS  Google Scholar 

  • Gibbons JL (1964) Cortisol secretion rate in depressive illness. Arch Gen Psychiatry 10:572–5

    Article  PubMed  CAS  Google Scholar 

  • Harris AP, Holmes MC, de Kloet ER, Chapman KE, Seckl JR (2013) Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behavior. Psychoneuroendocrinology 38:648–58

    Article  PubMed  CAS  Google Scholar 

  • Healy DG, Harkin A, Cryan JF, Kelly JP, Leonard BE (1999) Metyrapone displays antidepressant-like properties in preclinical paradigms. Psychopharmacol (Berl) 145:303–8

    Article  CAS  Google Scholar 

  • Herbert J (2012) Cortisol and depression: three questions for psychiatry. Psychol Med 8:1–21

    Google Scholar 

  • Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 17:187–205

    Article  PubMed  CAS  Google Scholar 

  • Jefferys D, Copolov D, Irby D, Funder J (1983) Behavioural effect of adrenalectomy: reversal by glucocorticoids or [d-Ala2, Met5] enkephalinamide. Eur J Pharmacol 92:99–103

    Article  PubMed  CAS  Google Scholar 

  • Jiang P, Xue Y, Li HD, Liu YP, Cai HL, Tang, MM, Zhang LH (2014) Dysregulation of vitamin D metabolism in the brain and myocardium of rats following prolonged exposure to dexamethasone. Psychopharmacol (Berl)

  • Johnson SA, Fournier NM, Kalynchuk LE (2006) Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav Brain Res 168:280–8

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic T, Phifer JE, Sicking K, Weiss T, Norrholm SD, Bradley B, Ressler KJ (2011) Cortisol suppression by dexamethasone reduces exaggerated fear responses in posttraumatic stress disorder. Psychoneuroendocrinology 36:1540–52

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Karandrea D, Kittas C, Kitraki E (2002) Forced swimming differentially affects male and female brain corticosteroid receptors. Neuroendocrinol 75:217–26

    Article  CAS  Google Scholar 

  • Karssen AM, Meijer OC, Berry A, Sanjuan Piñol R, de Kloet ER (2005) Low doses of dexamethasone can produce a hypocorticosteroid state in the brain. Endocrinol 146:5587–95

    Article  CAS  Google Scholar 

  • Kelly KJ, Donner NC, Hale MW, Lowry CA (2011) Swim stress activates serotonergic and nonserotonergic neurons in specific subdivisions of the rat dorsal raphe nucleus in a temperature-dependent manner. Neurosci 197:251–68

    Article  CAS  Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156:837–41

    Article  PubMed  CAS  Google Scholar 

  • Kessing LV, Agerbo E, Mortensen PB (2003) Does the impact of major stressful life events on the risk of developing depression change throughout life? Psychol Med 33:1177–84

    Article  PubMed  CAS  Google Scholar 

  • Mason BL, Pariante CM, Thomas SA (2008) A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinol 149:5244–53

    Article  CAS  Google Scholar 

  • McKernan DP, Dinan TG, Cryan JF (2009) “Killing the Blues”: a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 88:246–63

    Article  PubMed  CAS  Google Scholar 

  • McKlveen JM, Myers B, Flak JN, Bundzikova J, Solomon MB, Seroogy KB, Herman JP (2013) Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol Psychiatry 74:672–9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mondelli V, Pariante CM, Navari S, Aas M, D’Albenzio A, Di Forti M, Handley R, Hepgul N, Marques TR, Taylor H, Papadopoulos AS, Aitchison KJ, Murray RM, Dazzan P (2010) Higher cortisol levels are associated with smaller left hippocampal volume in first-episode psychosis. Schizophr Res 119:75–8

    Article  PubMed Central  PubMed  Google Scholar 

  • Murakami S, Imbe H, Morikawa Y, Kubo C, Senba E (2005) Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci Res 53:129–39

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Makino S, Matsumoto R, Nakayama S, Nishiyama M, Terada Y, Hashimoto K (2010) Regulation of glucocorticoid receptor transcription and nuclear translocation during single and repeated immobilization stress. Endocrinol 151:4344–55

    Article  CAS  Google Scholar 

  • O’Dwyer AM, Lightman SL, Marks MN, Checkley SA (1995) Treatment of major depression with metyrapone and hydrocortisone. J Affect Disord 33:123–8

    Article  PubMed  Google Scholar 

  • Oitzl MS, Champagne DL, van der Veen R, de Kloet ER (2010) Brain development under stress: hypotheses of glucocorticoid actions revisited. Neurosci Biobehav Rev 34:853–66

    Article  PubMed  CAS  Google Scholar 

  • Pariante CM (2003) Depression, stress and the adrenal axis. J Neuroendocrinol 15:811–2

    Article  PubMed  Google Scholar 

  • Paskitti ME, McCreary BJ, Herman JP (2000) Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis. Brain Res Mol Brain Res 80:142–52

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, London

    Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–91

    Article  PubMed  CAS  Google Scholar 

  • Putman P, Roelofs K (2011) Effects of single cortisol administrations on human affect reviewed: coping with stress through adaptive regulation of automatic cognitive processing. Psychoneuroendocrinology 36:439–48

    Article  PubMed  CAS  Google Scholar 

  • Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinol 117:2505–11

    Article  CAS  Google Scholar 

  • Reul JM, van den Bosch FR, de Kloet ER (1987) Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol 115:459–67

    Article  PubMed  CAS  Google Scholar 

  • Reul JM, Pearce PT, Funder JW, Krozowski ZS (1989) Type I and type II corticosteroid receptor gene expression in the rat: effect of adrenalectomy and dexamethasone administration. Mol Endocrinol 3:1674–80

    Article  PubMed  CAS  Google Scholar 

  • Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hörtnagl H, Flor H, Henn FA, Schütz G, Gass P (2005) Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 25:6243–50

    Article  PubMed  CAS  Google Scholar 

  • Robertson DA, Beattie JE, Reid IC, Balfour DJ (2005) Regulation of corticosteroid receptors in the rat brain: the role of serotonin and stress. Eur J Neurosci 21:1511–20

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B, Bohus B, McGaugh JL (1996) Dose-dependent suppression of adrenocortical activity with metyrapone: effects on emotion and memory. Psychoneuroendocrinology 21:681–93

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, McEwen BS (1985) Down-regulation of neural corticosterone receptors by corticosterone and dexamethasone. Brain Res 339:161–5

    Article  PubMed  CAS  Google Scholar 

  • Saveanu RV, Nemeroff CB (2012) Etiology of depression: genetic and environmental factors. Psychiatr Clin North Am 35:51–71

    Article  PubMed  Google Scholar 

  • Shishkina GT, Kalinina TS, Dygalo NN (2007) Up-regulation of tryptophan hydroxylase-2 mRNA in the rat brain by chronic fluoxetine treatment correlates with its antidepressant effect. Neurosci 150:404–12

    Article  CAS  Google Scholar 

  • Shishkina GT, Kalinina TS, Berezova IV, Bulygina VV, Dygalo NN (2010) Resistance to the development of stress-induced behavioral despair in the forced swim test associated with elevated hippocampal Bcl-xl expression. Behav Brain Res 213:218–24

    Article  PubMed  CAS  Google Scholar 

  • Shishkina GT, Kalinina TS, Berezova IV, Dygalo NN (2012) Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior. Neuropharmacol 62:177–83

    Article  CAS  Google Scholar 

  • Solomon MB, Furay AR, Jones K, Packard AE, Packard BA, Wulsin AC, Herman JP (2012) Deletion of forebrain glucocorticoid receptors impairs neuroendocrine stress responses and induces depression-like behavior in males but not females. Neurosci 203:135–43

    Article  CAS  Google Scholar 

  • Sterner EY, Kalynchuk LE (2010) Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 34:777–90

    Article  PubMed  CAS  Google Scholar 

  • Stone EA, Lin Y (2008) An anti-immobility effect of exogenous corticosterone in mice. Eur J Pharmacol 580:135–42

    Article  PubMed  CAS  Google Scholar 

  • Unemura K, Kume T, Kondo M, Maeda Y, Izumi Y, Akaike A (2012) Glucocorticoids decrease astrocyte numbers by reducing glucocorticoid receptor expression in vitro and in vivo. J Pharmacol Sci 119:30–9

    Article  PubMed  CAS  Google Scholar 

  • Veldhuis HD, de Korte CC, de Kloet ER (1985) Glucocorticoids facilitate the retention of acquired immobility during forced swimming. Eur J Pharmacol 115:211–7

    Article  PubMed  CAS  Google Scholar 

  • Viegas LR, Vicent GP, Baranao JL, Beato M, Pecci A (2004) Steroid hormones induce bcl-X gene expression through direct activation of distal promoter P4. J Biol Chem 279:9831–9

    Article  PubMed  CAS  Google Scholar 

  • Vincent MY, Hussain RJ, Zampi ME, Sheeran K, Solomon MB, Herman JP, Khan A, Jacobson L (2013) Sensitivity of depression-like behavior to glucocorticoids and antidepressants is independent of forebrain glucocorticoid receptors. Brain Res 1525:1–15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Q, Yu K, Wang J, Lin H, Wu Y, Wang W (2012) Predator stress-induced persistent emotional arousal is associated with alterations of plasma corticosterone and hippocampal steroid receptors in rat. Behav Brain Res 230:167–74

    Article  PubMed  CAS  Google Scholar 

  • Wann BP, Bah TM, Boucher M, Courtemanche J, Le Marec N, Rousseau G, Godbout R (2007) Vulnerability for apoptosis in the limbic system after myocardial infarction in rats: a possible model for human postinfarct major depression. J Psychiatry Neurosci 32:11–16

    PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Xie W, Dai J, Wang Z, Huang Y (2009) The varying effects of short-term and long-term corticosterone injections on depression-like behavior in mice. Brain Res 1261:82–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Russian Fund for Basic Research N 12-04-01102 and Grant from RAS N 6.19.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina T. Shishkina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkina, G.T., Bulygina, V.V. & Dygalo, N.N. Behavioral effects of glucocorticoids during the first exposures to the forced swim stress. Psychopharmacology 232, 851–860 (2015). https://doi.org/10.1007/s00213-014-3718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3718-8

Keywords

Navigation