Skip to main content
Log in

Effects of buprenorphine on behavioral tests for antidepressant and anxiolytic drugs in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Buprenorphine (BPN) has been shown to rapidly improve mood in treatment-resistant depressed patients in small clinical studies. However, BPN’s effects in preclinical tests for mood and antidepressant efficacy are largely unexplored.

Objective

The current study examined the effects of BPN in the forced swim test (FST) and novelty-induced hypophagia (NIH) test as measures of antidepressant and anxiolytic-like effects in C57BL/6 J mice. Microdialysis was used to measure whether BPN engaged kappa-opioid receptor (KORs) in the nucleus accumbens shell (NAcSh) at a behaviorally active dose (0.25 mg/kg).

Methods

BPN was tested in the FST at both 30 min and 24 h post-administration. Also measured in the FST at 24 h post-administration were the KOR antagonist norbinaltorphimine (nor-BNI), the MOR agonist morphine and the reference antidepressant desipramine. The anxiolytic effects of BPN were examined in the NIH test 24 h after treatment. The effects of acute injection of BPN and the KOR agonist U50,488 were measured on extracellular dopamine (DA) levels in the NAcSh.

Results

BPN produced significant reductions in FST immobility without changing locomotor activity and reduced approach latencies in the novel environment of the NIH test when tested 24 h after treatment. Repeated daily BPN injections for 6 days did not produce tolerance to these behavioral effects. nor-BNI produced a similar antidepressant-like response in the FST 24 h post-injection but morphine and desipramine were ineffective. BPN (0.25 mg/kg) did not alter DA levels when given alone but prevented the KOR agonist U50,488 from reducing DA levels.

Conclusions

Acute and subchronic treatment with BPN produced antidepressant and anxiolytic-like responses in mice at doses that engage KORs. These studies support the clinical evidence that BPN may be a novel rapid-acting antidepressant medication and provides rodent models for investigating associated neurochemical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Harbi KS (2012) Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Pref Adherence 6:369–388

    Article  Google Scholar 

  • Andrews CM, Lucki I (2001) Effects of cocaine on extracellular dopamine and serotonin levels in the nucleus accumbens. Psychopharmacology 155:221–229

    Article  PubMed  CAS  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balu DT, Hodes GE, Anderson BT, Lucki I (2009) Enhanced sensitivity of the MRL/MpJ mouse to the neuroplastic and behavioral effects of chronic antidepressant treatments. Neuropsychopharm 34:1764–1773

    Article  CAS  Google Scholar 

  • Bechtolt AJ, Valentino RJ, Lucki I (2008) Overlapping and distinct brain regions associated with the anxiolytic effects of chlordiazepoxide and chronic fluoxetine. Neuropsychopharmacology 33:2117–2130

    Article  CAS  Google Scholar 

  • Bodkin JA, Zornberg GL, Lukas SE, Cole JO (1995) Buprenorphine treatment of refractory depression. J Clin Psychopharmacol 15(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Podhorna J, Marazziti D (2002) Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology 163:121–141

    Article  PubMed  CAS  Google Scholar 

  • Brown SM, Holtzman M, Kim T, Kharasch ED (2011) Buprenorphine metabolites, buprenorphine-3-glucuronide and norbuprenorphine-3-glucuronide, are biologically active. Anesthesiology 115:1251–1260

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carr GV, Lucki I (2010) Comparison of the kappa opioid receptor antagonist DIPPA in tests of anxiety-like behavior between Wistar Kyoto and Sprague Dawley rats. Psychopharmacology 210:295–302

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carr GV, Bangasser DA, Bethea T, Young M, Valentino RJ, Lucki I (2010) Antidepressant-like effects of kappa-opioid receptor antagonists in Wistar Kyoto rats. Neuropsychopharmacology 35:752–763

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, Watanabe N, Nakagawa A, Omori IM, McGuire H, Tansella M, Barbui C (2009) Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet 373:746–758

    Article  PubMed  CAS  Google Scholar 

  • Cowan A (2007) Buprenorphine: the basic pharmacology revisited. J Addict Med 1:68–72

    Article  PubMed  CAS  Google Scholar 

  • Cowan A, Lewis JW (eds) (1995) Buprenorphine: combating drug abuse with a unique opioid. Wiley-Liss, New York

    Google Scholar 

  • Crowley JJ, Jones MD, O’Leary OF, Lucki I (2004) Automated tests for measuring the effects of antidepressants in mice. Pharmacol Biochem Behav 78:269–274

    Article  PubMed  CAS  Google Scholar 

  • Crown WH, Finkelstein S, Berndt ER, Ling D, Poret AW, Rush AJ, Russell JM (2002) The impact of treatment-resistant depression on health care utilization and costs. Clin Psychiatry 63(11):963–971

    Article  Google Scholar 

  • Cryan JF, Sweeney FF (2011) The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol 164:1129–1161

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cryan JF, Page ME, Lucki I (2005) Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 182:335–344

    Article  PubMed  CAS  Google Scholar 

  • Dalvi A, Lucki I (1999) Murine models of depression. Psychopharmacology 147:14–16

    Article  PubMed  CAS  Google Scholar 

  • Davis MP (2012) Twelve reasons for considering buprenorphine as a frontline analgesic in the management of pain. J Support Oncol 10(6):209–219

    Article  PubMed  CAS  Google Scholar 

  • Detke MJ, Johnson J, Lucki I (1997) Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol 5:107–112

    Article  PubMed  CAS  Google Scholar 

  • DiChiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    CAS  Google Scholar 

  • Dulawa SC, Hen R (2005) Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 29:771–783

    Article  PubMed  CAS  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Ehrich E, Turncliff R, Sellers E, Jones R, Fava M (2012) Early clinical development of the opioid modulator ALKS 5461 in the treatment of depression. NCDEU

  • Fostick L, Silberman A, Beckman M, Spivak B, Amital D (2010) The economic impact of depression: resistance or severity? Eur Neuropsychopharm 20:671–675

    Article  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (2004) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Glover EM, Davis M (2008) Anxiolytic-like effects of morphine and buprenorphine in the rat model of fear-potentiated startle: tolerance, cross-tolerance, and blockade by naloxone. Psychopharmacology 198:167–180

    Article  PubMed  CAS  Google Scholar 

  • Gringauz M, Rabinowitz R, Stav A, Korczyn AD (2001) Tolerance to the analgesic effect of buprenorphine, butorphanol, nalbuphine, and cyclorphan, and cross-tolerance to morphine. J Anesth 15:204–209

    Article  PubMed  CAS  Google Scholar 

  • Huang P, Kehner GB, Cowan A, Liu-Chen LY (2001) Comparison of pharmacological activities of buprenorphine and norbuprenorphine: norbuprenorphine is a potent opioid agonist. J Pharmacol Exp Ther 297:688–695

    PubMed  CAS  Google Scholar 

  • Ipser JC, Terburg D, Syal S, Phillips N, Solms M, Paksepp J, Malcolm-Smith S, Thomas K, Stein DJ, van Honk J (2013) Reduced fear-recognition sensitivity following acute buprenorphine administration in healthy volunteers. Psychoneuroendocrinology 38:166–170

    Article  PubMed  CAS  Google Scholar 

  • Jiao J, Nitzke AM, Doukas DG, Seiglie MP, Dulawa SC (2011) Antidepressant response to chronic citalopram treatment in eight inbred mouse strains. Psychopharmacology 213:509–520

    Article  PubMed  CAS  Google Scholar 

  • Karp JF, Butters MA, Begley A, Miller MD, Lenze EJ, Blumberger D, Mulsant B, Reynolds III CF (2014) Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in mid-life and older adults. J Clin Psychiatry in press

  • Kessler RC, Chiu WT, Demier O, Merikangas KR, Walters EE (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62(6):617–627

    Article  PubMed Central  PubMed  Google Scholar 

  • Knobelman DA, Hen R, Lucki I (2001) Genetic regulation of extracellular serotonin by 5-hydroxytryptamine1A and 5-hydroxytryptamine1B autoreceptors in different brain regions of the mouse. J Pharmacol Exp Ther 298:1083–1091

    PubMed  CAS  Google Scholar 

  • Knoll AT, Meloni EG, Thomas JB, Carroll FI, Carlezon WA (2007) Anxiolytic-like effects of kappa opioid receptor antagonists in models of unlearned and learned fear in rats. J Pharmacol Exp Ther 323:838–845

    Article  PubMed  CAS  Google Scholar 

  • Knoll AT, Muschamp JW, Sillivan SE, Ferguson D, Dietz DM, Meloni EG, Carroll FI, Nestler EJ, Konradi C, Carlezon WA (2011) Kappa opioid receptor signaling in the basolateral amygdala regulates conditioned fear and anxiety in rats. Biol Psychiatry 70:425–433

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kosten TR, Morgan C, Kosten TA (1990) Depressive symptoms during buprenorphine treatment of opioid abusers. J Subst Abuse Treat 7:51–54

    Article  PubMed  CAS  Google Scholar 

  • Leander DJ (1987) Buprenorphine has potent kappa opioid receptor antagonist activity. Neuropharmacology 26:1445–1447

    Article  PubMed  CAS  Google Scholar 

  • Lelong-Boulouard V, Quentin T, Moreaux F, Debruyne D, Boulouard M, Coquerel A (2006) Interactions of buprenorphine and dipotassium clorazepate on anxiety and memory functions in the mouse. Drug Alcohol Depen 85:103–113

    Article  CAS  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 155:315–322

    Article  PubMed  CAS  Google Scholar 

  • Lufty K, Cowan A (2004) Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol 2:395–402

    Article  Google Scholar 

  • Lutz PE, Kieffer BL (2013) Opioid receptors: distinct roles in mood disorders. Trends Neurosci 36(3):195–206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mague SD, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC Jr, Jones RM, Portoghese PS, Carlezon WA (2003) Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther 305:323–330

    Article  PubMed  CAS  Google Scholar 

  • Maisonneuve IM, Archer S, Glick SD (1994) U50,488, a kappa opioid receptor agonist, attenuates cocaine-induced increases in extracellular dopamine in the nucleus accumbens of rats. Neurosci Lett 181:57–60

    Article  PubMed  CAS  Google Scholar 

  • Marquez P, Ballram R, Kieffer BL, Lufty K (2007) The mu opioid receptor is involved in buprenorphine-induced locomotor stimulation and conditioned place preference. Neuropharmacology 52:1336–1341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McLaughlin JP, Marton-Popovici M, Chavkin C (2003) Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 23:5674–5683

    PubMed Central  PubMed  CAS  Google Scholar 

  • McLaughlin JP, Li S, Valdez J, Chavkin TA, Chavkin C (2006) Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system. Neuropsychopharmacology 31:1241–1248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, Collins KA, Mathew SJ, Charney DS, Iosifescu DV (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry 74:250–256

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nyhuis PW, Gastpar M, Scherbaum N (2008) Opiate treatment in depression refractory to antidepressants and electroconvulsive therapy. J Clin Psychopharmacol 28(5):593–595

    Article  PubMed  Google Scholar 

  • Paronis CA, Bergman J (2011) Buprenorphine and opioid antagonism, tolerance, and naltrexone-precipitated withdrawal. J Pharmacol Exp Ther 336:488–495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Richards ML, Sadee W (1985) Buprenorphine is an antagonist at the kappa opioid receptor. Pharmacol Res 2:178–181

    Article  CAS  Google Scholar 

  • Shirayama Y, Ishida H, Iwata M, Hazama GI, Kawahara R, Duman RS (2004) Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects. J Neurochem 90:1258–1268

    Article  PubMed  CAS  Google Scholar 

  • Shmygalev S, Damm M, Weckbecker K, Berghaus G, Petzke F, Sabatowski R (2011) The impact of long-term maintenance treatment with buprenorphine on complex psychomotor and cognitive function. Drug Alcohol Depend 117:190–197

    Article  PubMed  CAS  Google Scholar 

  • Tenore PL (2008) Psychotherapeutic benefits of opioid agonist therapy. J Addict Dis 27:49–65

    Article  PubMed  Google Scholar 

  • Van’t Veer A, Carlezon WA (2013) Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology 229:435–452

    Article  CAS  Google Scholar 

  • Zomkowski ADE, Santos ARS, Rodrigues ALS (2005) Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci Lett 381:279–283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by USPHS grants R01 MH92412 and T32 MH14654.

Conflict of interest

IL was a consultant for Alkermes. EF, KM, and SAR have no conflict to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irwin Lucki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcon, E., Maier, K., Robinson, S.A. et al. Effects of buprenorphine on behavioral tests for antidepressant and anxiolytic drugs in mice. Psychopharmacology 232, 907–915 (2015). https://doi.org/10.1007/s00213-014-3723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3723-y

Keywords

Navigation