Skip to main content
Log in

Acute effects of the designer drugs benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) using functional magnetic resonance imaging (fMRI) and the Stroop task—a pilot study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

A novel group of designer drugs containing benzylpiperazine (BZP) and/or trifluoromethylphenylpiperazine (TFMPP) have been available worldwide for more than a decade; however, their effects on human brain function have not been extensively described.

Objectives

In a double-blind, placebo-controlled crossover study, the acute effects of BZP and TFMPP (alone and in combination) on the neural networks involved in executive function were investigated using an event-related Stroop functional magnetic resonance imaging (fMRI) paradigm.

Methods

Thirteen healthy participants aged 18–40 years undertook the Stroop task 90 min after taking an oral dose of either BZP (200 mg), TFMPP (either 50 or 60 mg), BZP + TFMPP (100 + 30 mg) or placebo. A change in activity in neural regions reflects an increase in local demand for oxygen, due to an increase in neuronal activity.

Results

Relative to placebo, an increase in neural activation was observed in the dorsal striatum following BZP, and in the thalamus following TFMPP, when performing the Stroop task.

Conclusion

These data suggest that additional compensatory resources were recruited to maintain performance during the Stroop task. When BZP and TFMPP were administered together, both the dorsal striatum and thalamus were activated. However, the combination of BZP/TFMPP attenuated activation in the caudate, possibly due to TFMPP’s indirect effects on dopamine release via 5HT2C receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson IM, Clark L, Elliott R, Kulkarni B, Williams SR, Deakin JFW (2002) 5-HT(2C) receptor activation by M-chlorophenylpiperazine detected in humans with fMRI. Neuroreport 13:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Andrews TM, Anderson IM (1998) Information processing in anxiety: a pilot study of the effect of manipulating 5-HT function. J Psychopharmacol 12:155–160

    Article  CAS  PubMed  Google Scholar 

  • Antia U, Lee HS, Kydd RR, Tingle MD, Russell BR (2009) Pharmacokinetics of ‘party pill’ drug N-benzylpiperazine (BZP) in healthy human participants. Forensic Sci Int 186:63–67

    Article  CAS  PubMed  Google Scholar 

  • Antia U, Tingle MD, Russell BR (2010) Validation of an LC-MS method for the detection and quantification of BZP and TFMPP and their hydroxylated metabolites in human plasma and its application to the pharmacokinetic study of TFMPP in humans. J Forensic Sci 55:1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF (1998) Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 2:436–447

    Article  CAS  PubMed  Google Scholar 

  • Aron JL, Paulus MP (2007) Location, location: using functional magnetic resonance imaging to pinpoint brain differences relevant to stimulant use. Addiction 102(Suppl 1):33–43

    Article  PubMed  Google Scholar 

  • Auerbach SB, Kamalakannan N, Rutter JJ (1990) TFMPP and RU24969 enhance serotonin release from rat hippocampus. Eur J Pharmacol 190:51–57

    Article  CAS  PubMed  Google Scholar 

  • Badzakova-Trajkov G, Barnett KJ, Waldie KE, Kirk IJ (2009) An ERP investigation of the Stroop task: the role of the cingulate in attentional allocation and conflict resolution. Brain Res 1253:139–148

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Clark RD, Budzynski AG, Partilla JS, Blough BE, Rothman RB (2005) N-substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA or ‘Ecstasy’). Neuropsychopharmacology 30:550–560

    Article  CAS  PubMed  Google Scholar 

  • Benningfield MM, Cowan RL (2013) Brain serotonin function in MDMA (ecstasy) users: evidence for persisting neurotoxicity. Neuropsychopharmacology 38:253–255

    Article  PubMed  Google Scholar 

  • Carlsson M, Carlsson A (1990) Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophr Bull 16:425–432

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remiao F, Carvalho F, Bastos ML (2012) Toxicity of amphetamines: an update. Arch Toxicol 86:1167–1231

    Article  CAS  PubMed  Google Scholar 

  • Cloez-Tayarani I, Harel-Dupas C, Fillion G (1992) Inhibition of [3H] gamma-aminobutyric acid release from guinea-pig hippocampal synaptosomes by serotonergic agents. Fundam Clin Pharmacol 6:333–341

    Article  CAS  PubMed  Google Scholar 

  • Coenen AM (1998) Neuronal phenomena associated with vigilance and consciousness: from cellular mechanisms to electroencephalographic patterns. Conscious Cognit 7:42–53

    Article  CAS  Google Scholar 

  • Coull JT, Frith CD, Dolan RJ, Frackowiak RS, Grasby PM (1997) The neural correlates of the noradrenergic modulation of human attention, arousal and learning. Eur J Neurosci 9:589–598

    Article  CAS  PubMed  Google Scholar 

  • Curley L, Kydd RR, Kirk IJ, Russell BR (2013) Differential responses to anticipation of reward after an acute dose of the designer drugs benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) alone and in combination using functional magnetic resonance imaging (fMRI) Pychopharmacology

    Google Scholar 

  • da Silva Alves F, Schmitz N, Figee M, Abeling N, Hasler G, van der Meer J, Nederveen A, de Haan L, Linszen D, van Amelsvoort T (2011) Dopaminergic modulation of the human reward system: a placebo-controlled dopamine depletion fMRI study. J Psychopharmacol 25:538–549

    Article  PubMed  Google Scholar 

  • Delgado MR, Miller MM, Inati S, Phelps EA (2005) An fMRI study of reward-related probability learning. Neuroimage 24:862–873

    Article  CAS  PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (2000) Biochemical and electrophysiological evidence that RO 60-0175 inhibits mesolimbic dopaminergic function through serotonin(2C) receptors. Brain Res 865:85–90

    Article  PubMed  Google Scholar 

  • Di Matteo V, De Blasi A, Di Giulio C, Esposito E (2001) Role of 5-HT(2C) receptors in the control of central dopamine function. Trends Pharmacol Sci 22:229–232

    Article  PubMed  Google Scholar 

  • Fantegrossi WE, Winger G, Woods JH, Woolverton WL, Coop A (2005) Reinforcing and discriminative stimulus effects of 1-benzylpiperazine and trifluoromethylphenylpiperazine in rhesus monkeys. Drug Alc Depend 77:161–168

    Article  CAS  Google Scholar 

  • Fekete MI, Szentendrei T, Herman JP, Kanyicska B (1980) Effects of reserpine and antidepressants on dopamine and DOPAC (3,4-dihydroxyphenylacetic acid) concentrations in the striatum, olfactory tubercle and median eminence of rats. Eur J Pharmacol 64:231–238

    Article  CAS  PubMed  Google Scholar 

  • Green DW, Kherif F, Devlin JT, Price CJ (2010) The role of the left head of caudate in suppressing irrelevant words. J Cogn Neurosci 22:2369–2386

    Article  PubMed Central  PubMed  Google Scholar 

  • Heflin LH, Laluz V, Jang J, Ketelle R, Miller BL, Kramer JH (2011) Let’s inhibit our excitement: the relationships between Stroop, behavioral disinhibition, and the frontal lobes. Neuropsychology 25:655–665

    Article  PubMed Central  PubMed  Google Scholar 

  • Herndon JL, Pierson ME, Glennon RA (1992) Mechanistic investigation of the stimulus properties of 1-(3-trifluoromethylphenyl) piperazine. Pharmacol, Biochem Behav 43:739–748

    Article  CAS  Google Scholar 

  • Jan RK, Lin JC, Lee H, Sheridan JL, Kydd RR, Kirk IJ, Russell BR (2010) Determining the subjective effects of TFMPP in human males. Psychopharmacology 211:347–353

    Article  CAS  PubMed  Google Scholar 

  • Jones CN, Howard JL, McBennett ST (1980) Stimulus properties of antidepressants in the rat. Psychopharmacology 67:111–118

    Article  CAS  PubMed  Google Scholar 

  • Li C-SR, Yan P, Sinha R, Lee T-W (2008) Subcortical processes of motor response inhibition during a stop signal task. Neuroimage 41:1352–1363

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin JC, Bangs N, Lee H, Kydd RR, Russell BR (2009) Determining the subjective and physiological effects of BZP on human females. Psychopharmacology 207:439–446

    Article  CAS  PubMed  Google Scholar 

  • Lin JC, Jan RK, Kydd RR, Russell BR (2011a) Subjective effects in humans following administration of party pill drugs BZP and TFMPP alone and in combination. Drug Test Anal 3:582–585

    Article  CAS  PubMed  Google Scholar 

  • Lin JC, Jan RK, Lee H, Jensen M-A, Kydd RR, Russell BR (2011b) Determining the subjective and physiological effects of BZP combined with TFMPP in human males. Psychopharmacology 214:761–768

    Article  CAS  PubMed  Google Scholar 

  • Magyar K (1987) Pharmacokinetic aspects of the mode of action of EGYT-475, a new antidepressant agent. Polish J Pharmacol Pharma 39:107–112

    CAS  Google Scholar 

  • Mazaika P., Hoeft F., Glover G., Reiss A. (2009) Methods and software for fMRI analysis for clinical subjects. 15th Annual Meeting of the Organization for Human Brain Mapping, San Francisco, CA

  • McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA (1998) Positron emission tomographic evidence of toxic effect of MDMA (“Ecstasy”) on brain serotonin neurons in human beings. Lancet 352:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • McLaren, D. G., Ph.D. Postdoctoral Research Fellow (2011a) Customised script for SPM. Department of Neurology, Massachusetts General Hospital and Harvard Medical School

  • McLaren, D. G., Ph.D. Postdoctoral Research Fellow (2011b) Using parameter estimates to interpret percentage BOLD change in relation to the whole brain mean. Department of Neurology, Massachusetts General Hospital and Harvard Medical School

  • Millan MJ, Dekeyne A, Gobert A (1998) Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 37:953–955

    Article  CAS  PubMed  Google Scholar 

  • Miranda F, Orozco G, Velazquez-Martinez DN (2002) Full substitution of the discriminative cue of a 5-HT(1A/1B/2C) agonist with the combined administration of a 5-HT(1B/2C) and a 5-HT(1A) agonist. Behav Pharmacol 13:303–311

    Article  CAS  PubMed  Google Scholar 

  • Mogami T, Tanaka K (2006) Reward association affects neuronal responses to visual stimuli in macaque te and perirhinal cortices. J Neurosci 26:6761–6770

    Article  CAS  PubMed  Google Scholar 

  • Newman J (1995) Thalamic contributions to attention and consciousness. Conscious Cognit 4:172–193

    Article  CAS  Google Scholar 

  • Nichols TE (2008) Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. Neuroimage 39:261–268

    Article  PubMed Central  PubMed  Google Scholar 

  • Nissbrandt H, Waters N, Hjorth S (1992) The influence of serotoninergic drugs on dopaminergic neurotransmission in rat substantia nigra, striatum and limbic forebrain in vivo. Naunyn-Schmiedebergs Arch Pharmacol 346:12–19

    Article  CAS  PubMed  Google Scholar 

  • Oberlander C, Euvrard C, Dumont C, Boissier JR (1979) Circling behaviour induced by dopamine releasers and/or uptake inhibitors during degeneration of the nigrostriatal pathway. Eur J Pharmacol 60:163–170

    Article  CAS  PubMed  Google Scholar 

  • Parrott AC (2012) MDMA and 5-HT neurotoxicity: the empirical evidence for its adverse effects in humans—no need for translation. Br J Pharmacol 166:1518–1520, discussion 1521-1512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson BS, Kane MJ, Alexander GM, Lacadie C, Skudlarski P, Leung HC, May J, Gore JC (2002) An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cogn Brain Res 13:427–440

    Article  Google Scholar 

  • P.ettibone DJ, Williams M (1984) Serotonin-releasing effects of substituted piperazines in vitro. Biochem Pharmacol 33:1531–1535

  • Portas CM, Rees G, Howseman AM, Josephs O, Turner R, Frith CD (1998) A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J Neurosci 18:8979–8989

    CAS  PubMed  Google Scholar 

  • Posner MI, Dehaene S (1994) Attentional networks. Trends Neurosci 17:75–79

    Article  CAS  PubMed  Google Scholar 

  • Salo R, Ursu S, Buonocore MH, Leamon MH, Carter C (2009) Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: a functional magnetic resonance imaging study. Biol Psychiatry 65:706–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawynok J, Reid A (1992) Noradrenergic mediation of spinal anti-nociception by 5-hydroxytryptamine characterization of receptor subtypes. Eur J Pharmacol 223:49–56

    Article  CAS  PubMed  Google Scholar 

  • Schouw MLJ, Gevers S, Caan MWA, Majoie CBLM, Booij J, Nederveen AJ, Reneman L (2012) Mapping serotonergic dysfunction in MDMA (ecstasy) users using pharmacological MRI. Eur Neuropsychopharmacol 22:537–545

    Article  CAS  PubMed  Google Scholar 

  • Stroop, J. R., (1935) Studies of interference in serial verbal reactions. J Experiment Psychol, 643-662

  • Tekes K, Tothfalusi L, Malomvolgyi B, Herman F, Magyar K (1987) Studies on the biochemical mode of action of EGYT-475, a new antidepressant. Polish J Pharmacol Pharma 39:203–211

    Article  CAS  Google Scholar 

  • Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW, Ling W, London ED (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 24:6028–6036

    Article  CAS  PubMed  Google Scholar 

  • Vitay, J., Hamker, F. H. (2007) On the role of dopamine in cognitive vision. In: Attention in Cognitive Systems

  • Vollenweider FX, Geyer MA (2001) A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull 56:495–507

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse BD, Moises HC, Woodward DJ (1986) Interaction of serotonin with somatosensory cortical neuronal responses to afferent synaptic inputs and putative neurotransmitters. Brain Res Bull 17:507–518

    Article  CAS  PubMed  Google Scholar 

  • Wilkins C, Girling M, Sweetsur P, Huckle T, Huakau J (2006) Legal party pill use in New Zealand: prevalence of use, availability, health harms and ‘gateway effects’ of benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP). Centre for Social and Health Outcomes Research and Evaluation (SHORE), Massey University, Auckland

    Google Scholar 

  • Winstanley CA, Dalley JW, Theobald DEH, Robbins TW (2004a) Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology 29:1331–1343

    Article  CAS  PubMed  Google Scholar 

  • Winstanley CA, Theobald DEH, Dalley JW, Glennon JC, Robbins TW (2004b) 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology 176:376–385

    Article  CAS  PubMed  Google Scholar 

  • Zink CF, Pagnoni G, Martin-Skurski ME, Chappelow JC, Berns GS (2004) Human striatal responses to monetary reward depend on saliency. Neuron 42:509–517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Faculty Development Research Fund, School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland.

The authors would like to thank Dr. Donald McLaren for his guidance with fMRI data analysis.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise E. Curley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curley, L.E., Kydd, R.R., Robertson, M.C. et al. Acute effects of the designer drugs benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) using functional magnetic resonance imaging (fMRI) and the Stroop task—a pilot study. Psychopharmacology 232, 2969–2980 (2015). https://doi.org/10.1007/s00213-015-3933-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-3933-y

Keywords

Navigation