Skip to main content

Advertisement

Log in

Rivastigmine improves isolation rearing-induced prepulse inhibition deficits via muscarinic acetylcholine receptors in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine are used for the treatment of Alzheimer’s disease. We previously demonstrated that donepezil and galantamine differentially affect isolation rearing-induced prepulse inhibition (PPI) deficits and that this might be due to differential effects on brain muscarinic acetylcholine (mACh) receptor function in mice.

Objectives

We examined the effects of rivastigmine on isolation rearing-induced PPI deficits, brain ACh levels, and mACh receptor function in mice.

Methods

Acoustic startle responses were measured in a startle chamber. Microdialysis was performed, and the levels of dopamine and ACh in the prefrontal cortex were measured.

Results

Rivastigmine (0.3 mg/kg) improved PPI deficits, and this improvement was antagonized by the mACh receptor antagonist telenzepine but not by the nicotinic ACh receptor antagonist mecamylamine. Rivastigmine increased extracellular ACh levels by approximately 2–3-fold, less than the increase produced by galantamine. Rivastigmine enhanced the effect of the mACh receptor agonist N-desmethylclozapine on prefrontal dopamine release, a marker of mACh receptor function, and this increase was blocked by telenzepine. In contrast, galantamine did not affect N-desmethylclozapine-induced dopamine release. Furthermore, rivastigmine did not affect cortical dopamine release induced by the serotonin1A receptor agonist osemozotan, suggesting that the effect of rivastigmine has specificity for mACh receptors.

Conclusions

Taken together with our previous finding that marked increases in ACh levels are required for the PPI deficit improvement induced by galantamine, our present results suggest that rivastigmine improves isolation rearing-induced PPI deficits by increasing ACh levels and by concomitantly enhancing mACh receptor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ago Y, Sakaue M, Baba A, Matsuda T (2002) Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice. J Neurochem 83:353–359. doi:10.1046/j.1471-4159.2002.01128.x

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Koyama Y, Baba A, Matsuda T (2003) Regulation by 5-HT1A receptors of the in vivo release of 5-HT and DA in mouse frontal cortex. Neuropharmacology 45:1050–1056. doi:10.1016/S0028-3908(03)00304-6

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Nakamura S, Uda M, Kajii Y, Abe M, Baba A, Matsuda T (2006a) Attenuation by the 5-HT1A receptor agonist osemozotan of the behavioral effects of single and repeated methamphetamine in mice. Neuropharmacology 51:914–922. doi:10.1016/j.neuropharm.2006.06.001

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Sato M, Nakamura S, Baba A, Matsuda T (2006b) Lack of enhanced effect of antipsychotics combined with fluvoxamine on acetylcholine release in rat prefrontal cortex. J Pharmacol Sci 102:419–422. doi:10.1254/jphs.SC0060187

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Koda K, Ota Y, Kita Y, Fukada A, Takuma K, Matsuda T (2011) Donepezil, but not galantamine, blocks muscarinic receptor-mediated in vitro and in vivo responses. Synapse 65:1373–1377. doi:10.1002/syn.20969

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Araki R, Yano K, Kawasaki T, Chaki S, Nakazato A, Onoe H, Hashimoto H, Baba A, Takuma K, Matsuda T (2012) The selective metabotropic glutamate 2/3 receptor agonist MGS0028 reverses isolation rearing-induced abnormal behaviors in mice. J Pharmacol Sci 118:295–298. doi:10.1254/jphs.11200SC

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Araki R, Tanaka T, Sasaga A, Nishiyama S, Takuma K, Matsuda T (2013) Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice. Neuropsychopharmacology 38:1535–1547. doi:10.1038/npp.2013.52

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Araki R, Ago Y, Hasebe S, Nishiyama S, Tanaka T, Oka S, Takuma K, Matsuda T (2014) Involvement of prefrontal AMPA receptors in encounter stimulation-induced hyperactivity in isolation-reared mice. Int J Neuropsychopharmacol 17:883–893. doi:10.1017/S1461145713001582

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH (1986) Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem 47:263–277. doi:10.1111/j.1471-4159.1986.tb02858.x

    Article  PubMed  CAS  Google Scholar 

  • Ballard CG (2002) Advances in the treatment of Alzheimer’s disease: benefits of dual cholinesterase inhibition. Eur Neurol 47:64–70. doi:10.1159/000047952

    Article  PubMed  CAS  Google Scholar 

  • Ballmaier M, Casamenti F, Scali C, Mazzoncini R, Zoli M, Pepeu G, Spano PF (2002) Rivastigmine antagonizes deficits in prepulse inhibition induced by selective immunolesioning of cholinergic neurons in nucleus basalis magnocellularis. Neuroscience 114:91–98. doi:10.1016/S0306-4522(02)00234-8

    Article  PubMed  CAS  Google Scholar 

  • Bitsios P, Giakoumaki SG, Theou K, Frangou S (2006) Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia 44:2494–2499. doi:10.1016/j.neuropsychologia.2006.04.001

    Article  PubMed  Google Scholar 

  • Bortolozzi A, Masana M, Díaz-Mataix L, Cortés R, Scorza MC, Gingrich JA, Toth M, Artigas F (2010) Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT1A receptors but not 5-HT2A receptors. Int J Neuropsychopharmacol 13:1299–1314. doi:10.1017/S146114571000009X

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Swerdlow NR, Geyer MA (1999) Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. Am J Psychiatry 156:596–602

    PubMed  CAS  Google Scholar 

  • Chudasama Y, Robbins TW (2006) Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 73:19–38. doi:10.1016/j.biopsycho.2006.01.005

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784. doi:10.1016/j.neubiorev.2004.09.006

    Article  PubMed  CAS  Google Scholar 

  • Eskander MF, Nagykery NG, Leung EY, Khelghati B, Geula C (2005) Rivastigmine is a potent inhibitor of acetyl- and butyrylcholinesterase in Alzheimer’s plaques and tangles. Brain Res 1060:144–152. doi:10.1016/j.brainres.2005.08.039

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, Inc., San Diego

    Google Scholar 

  • Furukawa-Hibi Y, Alkam T, Nitta A, Matsuyama A, Mizoguchi H, Suzuki K, Moussaoui S, Yu QS, Greig NH, Nagai T, Yamada K (2011) Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice. Behav Brain Res 225:222–229. doi:10.1016/j.bbr.2011.07.035

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NE (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154. doi:10.1007/s002130100811

    Article  PubMed  CAS  Google Scholar 

  • Giacobini E (2003) Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res 28:515–522. doi:10.1023/A:1022869222652

    Article  PubMed  CAS  Google Scholar 

  • Graham FK (1975) The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248. doi:10.1111/j.1469-8986.1975.tb01284.x

    Article  PubMed  CAS  Google Scholar 

  • Higashino K, Ago Y, Umehara M, Kita Y, Fujita K, Takuma K, Matsuda T (2014) Effects of acute and chronic administration of venlafaxine and desipramine on extracellular monoamine levels in the mouse prefrontal cortex and striatum. Eur J Pharmacol 729:86–93. doi:10.1016/j.ejphar.2014.02.012

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu N, Ago Y, Hasebe S, Nishimura A, Mori K, Takuma K, Matsuda T (2013) Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency. Neuropharmacology 75:53–61. doi:10.1016/j.neuropharm.2013.06.026

    Article  PubMed  CAS  Google Scholar 

  • Islam MR, Moriguchi S, Tagashira H, Fukunaga K (2014) Rivastigmine improves hippocampal neurogenesis and depression-like behaviors via 5-HT1A receptor stimulation in olfactory bulbectomized mice. Neuroscience 272:116–130. doi:10.1016/j.neuroscience.2014.04.046

    Article  PubMed  CAS  Google Scholar 

  • Koda K, Ago Y, Kawasaki T, Hashimoto H, Baba A, Matsuda T (2008) Galantamine and donepezil differently affect isolation rearing-induced deficits of prepulse inhibition in mice. Psychopharmacology (Berl) 196:293–301. doi:10.1007/s00213-007-0962-1

    Article  CAS  Google Scholar 

  • Koda K, Ago Y, Yano K, Nishimura M, Kobayashi H, Fukada A, Takuma K, Matsuda T (2011) Involvement of decreased muscarinic receptor function in prepulse inhibition deficits in mice reared in social isolation. Br J Pharmacol 162:763–772. doi:10.1111/j.1476-5381.2010.01080.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lane RM, Potkin SG, Enz A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9:101–124. doi:10.1017/S1461145705005833

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Huang M, Ichikawa J, Dai J, Meltzer HY (2005) N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors. Neuropsychopharmacology 30:1986–1995. doi:10.1038/sj.npp.1300768

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Prus AJ, Dai J, Meltzer HY (2009) Differential effects of M1 and 5-hydroxytryptamine1A receptors on atypical antipsychotic drug-induced dopamine efflux in the medial prefrontal cortex. J Pharmacol Exp Ther 330:948–955. doi:10.1124/jpet.109.155663

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1978) Changes in brain cholinesterase in senile dementia of Alzheimer’s type. Neuropathol Appl Neurobiol 4:273–277. doi:10.1111/j.1365-2990.1978.tb00545.x

    Article  PubMed  CAS  Google Scholar 

  • Sakaue M, Somboonthum P, Nishihara B, Koyama Y, Hashimoto H, Baba A, Matsuda T (2000) Postsynaptic 5-hydroxytryptamine1A receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br J Pharmacol 129:1028–1034

  • Sato M, Ago Y, Koda K, Nakamura S, Kawasaki T, Baba A, Matsuda T (2007) Role of postsynaptic serotonin1A receptors in risperidone-induced increase in acetylcholine release in rat prefrontal cortex. Eur J Pharmacol 559:155–160. doi:10.1016/j.ejphar.2006.12.007

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL (2006) Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Arch Gen Psychiatry 63:1325–1335. doi:10.1001/archpsyc.63.12.1325

    Article  PubMed  Google Scholar 

  • Yano K, Koda K, Ago Y, Kobayashi H, Kawasaki T, Takuma K, Matsuda T (2009) Galantamine improves apomorphine-induced deficits in prepulse inhibition via muscarinic ACh receptors in mice. Br J Pharmacol 156:173–180. doi:10.1111/j.1476-5381.2008.00037.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by KAKENHI (25460099 (YA), 26293020 (HH), 26670122 (HH), 15H01288 (HH), and 15K18874 (YO)); the Neuropsychiatry Drug Discovery Consortium established by Dainippon Sumitomo Pharma Co., Ltd. (Japan) with Osaka University (TM and HH); Takeda Science Foundation (Japan) (YA); Research Foundation for Pharmaceutical Sciences (Japan) (YA); the Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (HH); and a fund by Novartis Pharma K.K. (Japan) (110601 (TM)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Matsuda.

Additional information

Kosuke Higashino and Yukio Ago contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higashino, K., Ago, Y., Umeki, T. et al. Rivastigmine improves isolation rearing-induced prepulse inhibition deficits via muscarinic acetylcholine receptors in mice. Psychopharmacology 233, 521–528 (2016). https://doi.org/10.1007/s00213-015-4123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4123-7

Keywords

Navigation