Skip to main content
Log in

Effects of acute memantine administration on MATRICS Consensus Cognitive Battery performance in psychosis: Testing an experimental medicine strategy

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Pro-cognitive agents for chronic psychotic disorders (CPDs) might be detected via experimental medicine models, in which neural targets engaged by the drug predict sensitivity to the drug’s pro-cognitive effects.

Objective

This study aims to use an experimental medicine model to test the hypothesis that “target engagement” predicts pro-cognitive effects of the NMDA antagonist, memantine (MEM), in CPDs.

Methods

MATRICS Consensus Cognitive Battery (MCCB) performance was assessed in CPD (n = 41) and healthy subjects (HS; n = 41) in a double-blind, randomized cross-over design of acute (single dose) MEM (placebo vs. 10 or 20 mg p.o.). Measures of prepulse inhibition (PPI) and mismatch negativity previously reported from this cohort substantiated target engagement. Biomarkers predicting MEM neurocognitive sensitivity were assessed.

Results

Testing confirmed MCCB deficits associated with CPD diagnosis, age, and anticholinergic exposure. MEM (20 mg p.o.) reduced MCCB performance in HS. To control for significant test order effects, an “order-corrected MEM effect” (OCME) was calculated. In CPD subjects, greater age, positive MEM effects on PPI, and SNP rs1337697 (within the ionotropic NMDA receptor gene, GRIN3A) predicted greater positive OCME with 20 mg MEM.

Conclusions

An experimental medicine model to assess acute pro-cognitive drug effects in CPD subjects is feasible but not without challenges. A single MEM 20 mg dose had a negative impact on neurocognition among HS. In CPD patients, age, MEM effects on PPI, and rs1337697 predicted sensitivity to the neurocognitive effects of MEM. Any potential clinical utility of these predictive markers for pro-cognitive effects of MEM in subgroups of CPD patients cannot be inferred without a validating clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasinazari M, Adib-Eshgh L, Rostami A, Beyraghi N, Dabir S, Jafari R (2015) Memantine in the prevention or alleviation of electroconvulsive therapy induces cognitive disorders: a placebo controlled trial. Asian J Psychiatry 15:5–9

    Article  Google Scholar 

  • Abel KM, Allin MP, Hemsley DR, Geyer MA (2003) Low doses of ketamine increases prepulse inhibition in healthy men. Neuropharmacology 44:729–737

    Article  CAS  PubMed  Google Scholar 

  • AhnAllen CG, Nestor PG, Shenton ME, McCarley RW, Niznikiewicz MA (2008) Early nicotine withdrawal and transdermal nicotine effects on neurocognitive performance in schizophrenia. Schizophr Res 100:261–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Alizadeh NS, Maroufi A, Jamshidi M, Hassanzadeh K, Gharibi F, Ghaderi E (2015) Effect of memantine on cognitive performance in patients under electroconvulsive therapy: a double-blind randomized clinical trial. Clin Neuropharmacol 38:236–40

    Article  CAS  PubMed  Google Scholar 

  • Barr RS, Culhane MA, Jubelt LE, Mufti RS, Dyer MA, Weiss AP, Deckersbach T, Kelly JF, Freudenreich O, Goff DC, Evins AG (2008) The effects of transdermal nicotine on cognition in nonsmokers with schizophrenia and nonpsychiatric controls. Neuropsychopharmacology 33:480–490

    Article  CAS  PubMed  Google Scholar 

  • Bhakta S, Twamley E, Light G, Talledo J, Chou HH, Balvaneda B, Gaddis L, Swerdlow N (2015) Memantine’s acute effects on neurocognition in schizophrenia (SZ) as a predictor of neurocognitive benefits from Compensatory Cognitive Training (CCT). Neuropsychopharmacology 40(Supp):S368–369

    Google Scholar 

  • Biller BM (2007) Concepts in the diagnosis of adult growth hormone deficiency. Horm Res 68(Suppl)5:59–65

  • Bond AJ, James DC, Lader MH (1974) Physiological and psychological measures in anxious patients. Psychol Med 4:364–373

    Article  CAS  PubMed  Google Scholar 

  • Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16(1):77–86

    Article  CAS  PubMed  Google Scholar 

  • Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, Heresco-Levy U, Carpenter WT (2007) The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry 164:1593–1602

    Article  PubMed  Google Scholar 

  • Bunney WE Jr, Hetrick WP, Bunney BG, Patterson JV, Jin Y, Potkin SG, Sandman CA (1999) Structured Interview for Assessing Perceptual Anomalies (SIAPA). Schizophr Bull 25:577–592

    Article  PubMed  Google Scholar 

  • Chew ML, Mulsant BH, Pollock BG, Lehman ME, Greenspan A, Mahmoud RA, Kirshner MA, Sorisio DA, Bies RR, Gharabawi G (2008) Anticholinergic activity of 107 medications commonly used by older adults. J Am Geriatr Soc 56:1333–1341

    Article  PubMed  Google Scholar 

  • Chou HH, Talledo JA, Lamb SN, Thompson WK, Swerdlow NR (2013) Amphetamine effects on MATRICS Consensus Cognitive Battery performance in healthy adults. Psychopharmacology (Berlin) 227:165–176

    Article  CAS  Google Scholar 

  • de Lucena D, Fernandes BS, Berk M, Dodd S, Medeiros DW, Pedrini M, Kunz M, Gomes FA, Giglio LF, Lobato MI, Belonte-de-Abreu PS, Gama CS (2009) Improvement of negative and positive symptoms in treatment refractory schizophrenia: a double-blind, randomized, placebo-controlled trial with memantine as add-on therapy to clozapine. J Clin Psychiatry 70:1416–1423

    Article  PubMed  Google Scholar 

  • Deutsch SI, Rosse RB, Schwartz BL, Mastropaolo J (2001) A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacol 24:43–49

    Article  CAS  PubMed  Google Scholar 

  • Duncan EJ, Madonick SH, Parwani A, Angrist B, Rajan R, Chakravorty S, Efferen TR, Szilagyi S, Stephanides M, Chappell PB, Gonzenbach S, Ko GN, Rotrosen JP (2001) Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology 25:72–83

    Article  CAS  PubMed  Google Scholar 

  • Fruchter O, Yigla M (2009) Bronchodilator response after negative methacholine challenge test predicts future diagnosis of asthma. J Asthma 46:722–725

    Article  CAS  PubMed  Google Scholar 

  • Geerts H, Roberts P2, Spiros A3 (2015) Assessing the synergy between cholinomimetics and memantine as augmentation therapy in cognitive impairment in schizophrenia. A virtual human patient trial using quantitative systems pharmacology. Front Pharmacol 6:198

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    Article  CAS  PubMed  Google Scholar 

  • Green MF, Kern RS, Heaton RK (2004) Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res 72:41–51

    Article  PubMed  Google Scholar 

  • Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL (2011) Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 168:930–946

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwood TA, Swerdlow NR, Gur RE, Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Green MF, Gur RC, Lazzeroni LC, Nuechterlein KH, Olincy A, Radant AD, Ray A, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Light GA, Braff DL (2013) Genome- wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 170:521–532

    Article  PubMed  Google Scholar 

  • Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC (2004) High dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry 55:165–171

    Article  CAS  PubMed  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, Catinari S, Ermilov M (2005) D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57:577–585

    Article  CAS  PubMed  Google Scholar 

  • Hughes AJ, Lees AJ, Stern GM (1990) Apomorphine test to predict dopaminergic responsiveness in parkinsonian syndromes. Lancet 336:32–34

    Article  CAS  PubMed  Google Scholar 

  • Insel TR (2015) The NIMH experimental medicine initiative. World Psychiatry 14:151–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108

    Article  CAS  PubMed  Google Scholar 

  • Johnson JW, Kotermanski SE (2005) Mechanism of action of memantine. Curr Opin Pharmacol 6:61–67

    Article  PubMed  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    Article  CAS  PubMed  Google Scholar 

  • Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA, CATIE Investigators; Neurocognitive Working Group (2007) Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 64:633–647

    Article  CAS  PubMed  Google Scholar 

  • Keilhoff G, Wolf G (1992) Memantine prevents quinolinic acid-induced hippocampal damage. Eur J Pharmacol 219:451–454

    Article  CAS  PubMed  Google Scholar 

  • Kern RS, Nuechterlein KH, Green MF, Baade LE, Fenton WS, Gold JM, Keefe RS, Mesholam-Gately R, Mintz J, Seidman LJ, Stover E, Marder SR (2008) The MATRICS Consensus Cognitive Battery, part 2: co-norming and standardization. Am J Psychiatry 165:214–220

    Article  PubMed  Google Scholar 

  • Kim YW, Shin JC, An YS (2010) Changes in cerebral glucose metabolism in patients with osttraumatic cognitive impairment after memantine therapy: a preliminary study. Ann Nucl Med 24:363–369

    Article  CAS  PubMed  Google Scholar 

  • Kishi T, Iwata N (2013) NMDA receptor antagonists interventions in schizophrenia: meta-analysis of randomized, placebo-controlled trials. J Psychiatr Res 47:1143–1149

    Article  PubMed  Google Scholar 

  • Koola MM, Buchanan RW, Pillai A, Aitchison KJ, Weinberger DR, Aaronson ST, Dickerson FB (2014) Potential role of the combination of galantamine and memantine to improve cognition in schizophrenia. Schizophr Res 157:84–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Korostenskaja M, Nikulin VV, Kicić D, Nikulina AV, Kähkönen S (2007) Effects of NMDA receptor antagonist memantine on mismatch negativity. Brain Res Bull 72:275–283

    Article  CAS  PubMed  Google Scholar 

  • Krivoy A, Weizman A, Laor L, Hellinger N, Zemishlany Z, Fischel T (2007) Addition of memantine to antipsychotic treatment in schizophrenia inpatients with residual symptoms: a preliminary study. Eur Neuropsychopharmacol 18:117–121

    Article  PubMed  Google Scholar 

  • Lee JG, Lee SW, Lee BJ, Park SW, Kim GM, Kim YH (2012) Adjunctive memantine therapy for cognitive impairment in chronic schizophrenia: a placebo-controlled pilot study. Psychiatry Investig 9:166–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman JA, Papadakis K, Csernansky J, Litman R, Volavka J, Jia XD, Gage A, MEM-MD-29 Study Group (2009) A randomized, placebo-controlled study of memantine as adjunctive treatment in patients with schizophrenia. Neuropsychopharmacology 34:1322–1329

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi N, Kang YJ, Tu S, McKercher SR, Masliah E, Lipton SA (2016) Differential effects of pharmacologic and genetic modulation of NMDA receptor activity on HIV/gp120-induced neuronal damage in an in vivo mouse model. J Mol Neurosci 58:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norris H (1971) The action of sedation on brain-stem oculomotor systems in man. Neuropharmacology 10:181–191

    Article  CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, Essock S, Fenton WS, Frese FJ 3rd, Gold JM, Goldberg T, Heaton RK, Keefe RS, Kraemer H, Mesholam-Gately R, Seidman LJ, Stover E, Weinberger DR, Young AS, Zalcman S, Marder SR (2008) The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity. Am J Psychiatry 165:203–213

    Article  PubMed  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova M, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz R, Hunter CA (2007) Toxoplasma gondii and schizophrenia: linkage through astrocyte-derived kynurenic acid? Schizophr Bull 33:652–653

  • Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al (1998) The Mini- International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33, quiz 34–57

    PubMed  Google Scholar 

  • Sonkusare SK, Kaul CL, Ramarao P (2005) Dementia of Alzheimer’s disease and other neurodegenerative disorders—memantine, a new hope. Pharmacol Res 51:1–17

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Eastvold A, Karban B, Ploum Y, Stephany N, Geyer MA, Cadenhead K, Auerbach PP (2002) Dopamine agonist effects on startle and sensorimotor gating in normal male subjects: time course studies. Psychopharmacology 161:189–201

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, van Bergeijk DP, Bergsma F, Weber E, Talledo J (2009) The effects of memantine on prepulse inhibition. Neuropsychopharmacology 34:1854–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, Bhakta S, Chou HH, Talledo JA, Balvaneda B, Light GA (2016) Memantine effects on sensorimotor gating and mismatch negativity in patients with chronic psychosis. Neuropsychopharmacology 41:419–30

    Article  CAS  PubMed  Google Scholar 

  • Velligan DI, Mahurin RK, Diamond PL, Hazleton BC, Eckert SL, Miller AL (1997) The functional significance of symptomatology and cognitive function in schizophrenia. Schizophr Res 25:21–31

    Article  CAS  PubMed  Google Scholar 

  • Wesnes K, Pincock C (2002) Practice effects on cognitive tasks: a major problem? Lancet Neurol 1:473

    Article  PubMed  Google Scholar 

  • Wilkinson GS, Robertson GJ (2006) WRAT4: wide range achievement test professional manual, 4th edn. Psychological Assessment Resources, Lutz

    Google Scholar 

  • Willenborg B, Schmoller A, Caspary J, Melchert UH, Scholand-Engler HG, Jauch-Chara K (2011) Memantine prevents hypoglycemia-induced decrements of the cerebral energy status in healthy subjects. J Clin Endocrinol Metab 96:E384–E388

    Article  CAS  PubMed  Google Scholar 

  • Zdanys K, Tampi RR (2008) A systematic review of off-label uses of memantine for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 32:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Zink M, Correll CU (2015) Glutamatergic agents for schizophrenia: current evidence and perspectives. Expert Rev Clin Pharmacol 8:335–52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Sarah Lamb for her technical assistance in data collection, Ms. Michelle Breier for assistance in data collation, and Ms. Maria Bongiovanni in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal R. Swerdlow.

Ethics declarations

Conflict of interest

Supported by MH059803, MH094320, and MH093453 (NRS, PI). SB and GAL supported by the VISN 22 MIRECC, GAL by the Sidney R. Baer Jr. Foundation and Brain & Behavior Research Foundation, SB and HHC by the Brain & Behavior Research Foundation, SB by the APF Kempf Award, and HHC by the APF/Merck Early Academic Career Award and T32-MH018399. SNP genotyping was performed by the Genomics Shared Resource supported by Roswell Park Cancer Institute and National Cancer Institute (NCI) grant P30CA016056. In the past 3 years, NRS has had support from Neurocrine, Inc. and Genco, Inc., and GAL has received support from Astellas and Forum Pharmaceuticals. Neither NRS nor GAL have ever received support from companies that develop or market memantine. The remaining authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 29 kb)

Table S2

(DOC 29 kb)

Table S3

(DOC 110 kb)

Table S4

(DOC 38 kb)

Table S5

(DOC 53 kb)

Table S6

(DOC 28 kb)

Table S7

(DOC 29 kb)

Fig. S1

Effects of MEM on autonomic and subjective measures in HS and CPD subjects, assessed prior to and after MCCB administration. Values represent change from baseline (pre-pill) measures for each subject. The SRS is a visual analog scale (VAS) designed to assess general somatic and psychological symptoms, and level of consciousness (Bond et al. 1974; Bunney et al. 1999; Norris 1971). Participants rated on each 100 mm VAS the levels of several subjective states: “happy,” “drowsy,” (shown here) “queasy,” “dizzy,” and “perceptual sensitivity” that included prompts such as “Normal sounds seem unusually intense or loud” (Swerdlow et al. 2002). No statistically significant effects of drug were detected on any measure in either subject group. (GIF 107 kb)

High Resolution Image (TIF 124 kb)

Fig. S2

Example of alternative strategies to understand MEM effects on neurocognitive domains: effects of MEM on MCCB domains that incorporate a timing/speed demand (SP, AV, RP) vs. those without such a demand (WM, VL, VisL, SC) significant main effect of drug. MCCB domains were separated into those that do vs. do not include a demand for speeded response (reaction time). Among SZ patients, 10 mg MEM had no significant effect on either grouping of domains (F’s < 1), while 20 mg MEM significantly reduced performance in speed-dependent (p < 0.006) but not non-speed-dependent domains (F < 1). (PPTX 145 kb)

Supplemental Methods

(DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhakta, S.G., Chou, HH., Rana, B. et al. Effects of acute memantine administration on MATRICS Consensus Cognitive Battery performance in psychosis: Testing an experimental medicine strategy. Psychopharmacology 233, 2399–2410 (2016). https://doi.org/10.1007/s00213-016-4291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4291-0

Keywords

Navigation