Skip to main content
Log in

Orbitofrontal and caudate volumes in cannabis users: a multi-site mega-analysis comparing dependent versus non-dependent users

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cannabis (CB) use and dependence are associated with regionally specific alterations to brain circuitry and substantial psychosocial impairment.

Objectives

The objective of this study was to investigate the association between CB use and dependence, and the volumes of brain regions critically involved in goal-directed learning and behaviour—the orbitofrontal cortex (OFC) and caudate.

Methods

In the largest multi-site structural imaging study of CB users vs healthy controls (HC), 140 CB users and 121 HC were recruited from four research sites. Group differences in OFC and caudate volumes were investigated between HC and CB users and between 70 dependent (CB-dep) and 50 non-dependent (CB-nondep) users. The relationship between quantity of CB use and age of onset of use and caudate and OFC volumes was explored.

Results

CB users (consisting of CB-dep and CB-nondep) did not significantly differ from HC in OFC or caudate volume. CB-dep compared to CB-nondep users exhibited significantly smaller volume in the medial and the lateral OFC. Lateral OFC volume was particularly smaller in CB-dep females, and reduced volume in the CB-dep group was associated with higher monthly cannabis dosage.

Conclusions

Smaller medial OFC volume may be driven by CB dependence-related mechanisms, while smaller lateral OFC volume may be due to ongoing exposure to cannabinoid compounds. The results highlight a distinction between cannabis use and dependence and warrant examination of gender-specific effects in studies of CB dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282:298–300

    Article  CAS  PubMed  Google Scholar 

  • Ashtari M, Avants B, Cyckowski L et al (2011) Medial temporal structures and memory functions in adolescents with heavy cannabis use. J Psychiatr Res 45:1055–1066

    Article  PubMed  PubMed Central  Google Scholar 

  • Batalla A, Soriano-mas C, López-solà M et al (2013) Modulation of brain structure by catechol-O-methyltransferase Val158Met polymorphism in chronic cannabis users. Addict Biol 19:722–732

    Article  PubMed  CAS  Google Scholar 

  • Battistella G, Fornari E, Annoni J-M et al (2014) Long-term effects of cannabis on brain structure. Neuropsychopharmacology 39:2041–2048

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under depencency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bloomfield MAP, Morgan CJA, Egerton A et al (2014) Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry 75:470–478

    Article  CAS  PubMed  Google Scholar 

  • Boes AD, Bechara A, Tranel D et al (2009) Right ventromedial prefrontal cortex: a neuroanatomical correlate of impulse control in boys. Soc Cogn Affect Neurosci 4:1–9

    Article  PubMed  Google Scholar 

  • Bossong MG, van Berckel BN, Boellaard R et al (2009) Δ9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 34:759–766

    Article  CAS  PubMed  Google Scholar 

  • Broyd SJ, van Hell HH, Beale C et al (2016) Acute and chronic effects of cannabinoids on human cognition—a systematic review. Biol Psychiatry 79:557–567

    Article  CAS  PubMed  Google Scholar 

  • Budney AJ, Moore BA (2002) Development and consequences of cannabis dependence. J Clin Pharmacol 42:28S–33S

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Cheetham A, Allen NB, Whittle S et al (2011) Orbitofrontal volumes in early adolescence predict initiation of cannabis use: a 4-year longitudinal and prospective study. Biol Psychiatry 71:684–692

    Article  PubMed  Google Scholar 

  • Chen CY, O’Brien MS, Anthony JC (2005) Who becomes cannabis dependent soon after onset of use? Epidemiological evidence from the United States: 2000-2001. Drug Alcohol Depend 79:11–22

    Article  PubMed  Google Scholar 

  • Churchwell JC, Lopez-Larson M, Yurgelun-Todd DA (2010) Altered frontal cortical volume and decision making in adolescent cannabis users. Front Psychol 1:1–8

    Article  Google Scholar 

  • Cousijn J, Wiers RW, Ridderinkhof KR et al (2012) Grey matter alterations associated with cannabis use : results of a VBM study in heavy cannabis users and healthy controls. NeuroImage 59:3845–3851

    Article  PubMed  Google Scholar 

  • Craft RM (2005) Sex differences in behavioral effects of cannabinoids. Life Sci 77:2471–2478

    Article  CAS  PubMed  Google Scholar 

  • Craft RM, Marusich JA, Wiley JL (2013) Sex differences in cannabinoid pharmacology: a reflection of differences in the endocannabinoid system? Life Sci 92:476–481

    Article  CAS  PubMed  Google Scholar 

  • Curran HV, Freeman TP, Mokrysz C et al (2016) Keep off the grass? Cannabis, cognition and addiction. Nat Rev Neurosci 17:293–306

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt L, Chiu WT, Sampson N et al (2007) Epidemiological patterns of extra-medical drug use in the United States: evidence from the National Comorbidity Survey Replication, 2001-2003. Drug Alcohol Depend 90:210–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Downer E, Boland B, Fogarty M, Campbell V (2001) Delta 9-tetrahydrocannabinol induces the apoptotic pathway in cultured cortical neurones via activation of the CB1 receptor. Neuroreport 12:3973–3978

    Article  CAS  PubMed  Google Scholar 

  • Elkashef A, Vocci F, Huestis M et al (2008) Marijuana neurobiology and treatment. Subst Abus 29:17–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Enzi B, Lissek S, Edel M-A et al (2015) Alterations of monetary reward and punishment processing in chronic cannabis users: an fMRI study. PLoS One 10:e0119150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ersche KD, Barnes A, Simon Jones P et al (2011) Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134:2013–2024

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskildsen S, Coupe P (2011) Effect of non-local means denoising on cortical segmentation accuracy with FACE. In: Organization for Human Brain Mapping 2011 Annual Meeting, Jun 2011, Canada

  • Everitt BJ, Robbins TW (2013) From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev 37:1946–1954

  • Everitt BJ, Robbins TW (2016) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67:150807174122003

    Article  Google Scholar 

  • Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Rev 36:129–138

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Belin D, Economidou D et al (2008) Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc B Biol Sci 363:3125–3135

    Article  Google Scholar 

  • Fattore L, Fratta W (2010) How important are sex differences in cannabinoid action? Br J Pharmacol 160:544–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattore L, Spano MS, Altea S et al (2009) Cannabinoid self-administration in rats: sex differences and the influence of ovarian function. Br J Pharmacol 152:795–804

    Article  CAS  Google Scholar 

  • Fellhauer I, Zöllner FG, Schröder J et al (2015) Comparison of automated brain segmentation using a brain phantom and patients with early Alzheimer’s dementia or mild cognitive impairment. Psychiatry Res Neuroimaging 233:299–305

  • Filbey FM, Dunlop J (2014) Differential reward network functional connectivity in cannabis dependent and non-dependent users. Drug Alcohol Depend 140:101–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Filbey FM, Yezhuvath U (2013) Functional connectivity in inhibitory control networks and severity of cannabis use disorder. Am J Drug Alcohol Abuse 39:382–391

    Article  PubMed  PubMed Central  Google Scholar 

  • Filbey FM, Schacht JP, Myers US et al (2009) Marijuana craving in the brain. Proc Natl Acad Sci U S A 106:13016–13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filbey FM, Aslan S, Calhoun VD et al (2014) Long-term effects of marijuana use on the brain. Proc Natl Acad Sci 111:16913–16918

  • Fineberg NA, Potenza MN, Chamberlain SR et al (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35:591–604

    Article  PubMed  Google Scholar 

  • Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  CAS  PubMed  Google Scholar 

  • Free SL, Bergin PS, Fish DR et al (1995) Methods for normalization of hippocampal volumes measured with MR. Am J Neuroradiol 16:637–643

    CAS  PubMed  Google Scholar 

  • Gaser C, Coupé P (2010) Impact of non-local means filtering on brain tissue segmentation. Organ. Hum. Brain Mapp. 2010 Annu. Meet. United States

  • Gatzke-Kopp LM, Beauchaine TP, Shannon KE et al (2009) Neurological correlates of reward responding in adolescents with and without externalizing behavior disorders. J Abnorm Psychol 118:203–213

    Article  PubMed  PubMed Central  Google Scholar 

  • van de Giessen E, Weinstein JJ, Cassidy CM et al (2016) Deficits in striatal dopamine release in cannabis dependence. Mol Psychiatry 22:1–8

    Google Scholar 

  • Gillan CM, Papmeyer M, Morein-zamir S et al (2011) Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am J Psychiatry 168:718–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilman JM, Kuster JK, Lee S et al (2014) Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J Neurosci 34:5529–5538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gossop M, Darke S, Griffiths P et al (1995) The severity of dependence scale (SDS): psychometric properties of the SDS in English and Australian samples of heroin, cocaine and amphetamine users. Addiction 90:607–614

    Article  CAS  PubMed  Google Scholar 

  • Gremel CM, Costa RM (2013) Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun 4:2264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haber SN (2016) Corticostriatal circuitry. Dialogues Clin Neurosci 18:7–21

    PubMed  PubMed Central  Google Scholar 

  • Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867

    CAS  PubMed  Google Scholar 

  • Hasin DS, O’Brien CP, Auriacombe M et al (2013) DSM-5 criteria for substance use disorders: recommendations and rationale. Am J Psychiatry 170:834–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Ko JH, Strafella AP, Dagher A (2013) Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proc Natl Acad Sci U S A 110:4422–4427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Avila CA, Rounsaville BJ, Kranzler HR (2004) Opioid-, cannabis- and alcohol-dependent women show more rapid progression to substance abuse treatment. Drug Alcohol Depend 74:265–272

    Article  CAS  PubMed  Google Scholar 

  • Houck JM, Bryan AD, Feldstein Ewing SW (2013) Functional connectivity and cannabis use in high-risk adolescents. Am J Drug Alcohol Abuse 39:414–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Huestis MA (2007) Human cannabinoid pharmacokinetics. Chem Biodivers 4:1770–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253

    CAS  PubMed  Google Scholar 

  • Jager G, Block RI, Luijten M, Ramsey NF (2012) Tentative evidence for striatal hyperactivity in adolescent cannabis-using boys: a cross-sectional multicenter fMRI study. J Psychoactive Drugs 45:156–167

    Article  Google Scholar 

  • Kable JW, Glimcher PW (2007) The neural correlates of subjective value during intertemporal choice. Nat Neurosci 10:1625–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372

    Article  PubMed  Google Scholar 

  • Kühn S, Schubert F, Gallinat J (2010) Reduced thickness of medial orbitofrontal cortex in smokers. Biol Psychiatry 68:1061–1065

    Article  PubMed  Google Scholar 

  • Lecrubier Y, Sheehan DV, Weiller E et al (1997) The MINI International neuropsychiatric interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur Psychiatry 12:224–231

    Article  Google Scholar 

  • Li Y, Yuan K, Cai C et al (2015) Reduced frontal cortical thickness and increased caudate volume within fronto-striatal circuits in young adult smokers. Drug Alcohol Depend 151:211–219

    Article  PubMed  Google Scholar 

  • Lorenzetti V, Solowij N, Fornito A et al (2012) P.1.B.003 the impact of regular cannabis use on human brain structure. Eur Neuropsychopharmacol 22:S164–S165

    Article  Google Scholar 

  • Lorenzetti V, Solowij N, Fornito A et al (2014) The association between regular cannabis exposure and alterations of human brain morphology: an updated review of the literature. Curr Pharm Des 20:2138–2167

    Article  CAS  PubMed  Google Scholar 

  • Lorenzetti V, Solowij N, Whittle S et al (2015) Gross morphological brain changes with chronic, heavy cannabis use. Br J Psychiatry 206:77–78

    Article  PubMed  Google Scholar 

  • Lorenzetti V, Cousijn J, Solowij N et al (2016) The neurobiology of cannabis use disorder: a call for evidence. Front Behav Neurosci 10:1–3

    Article  Google Scholar 

  • Ma N, Liu Y, Fu XM et al (2011) Abnormal brain default-mode network functional connectivity in drug addicts. PLoS ONE 6:e16560

  • Manjón JV, Coupé P, Buades A et al (2012) New methods for MRI denoising based on sparseness and self-similarity. Med Image Anal 16:18–27

    Article  PubMed  Google Scholar 

  • Martin G, Copeland J, Gates P, Gilmour S (2006) The severity of dependence scale (SDS) in an adolescent population of cannabis users: reliability, validity and diagnostic cut-off. Drug Alcohol Depend 83:90–93

    Article  PubMed  Google Scholar 

  • Martinez D, Slifstein M, Broft A et al (2003) Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 23:285–300

    Article  CAS  PubMed  Google Scholar 

  • Mashhoon Y, Sava S, Sneider JT et al (2015) Cortical thinness and volume differences associated with marijuana abuse in emerging adults. Drug Alcohol Depend 155:275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo K, Nicoletti M, Nemoto K et al (2009) A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum Brain Mapp 30:1188–1195

    Article  PubMed  Google Scholar 

  • Mcqueeny T, Padula CB, Price J et al (2011) Gender effects on amygdala morphometry in adolescent marijuana users. Behav Brain Res 224:128–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina KL, Schweinsburg AD, Cohen-Zion M et al (2007) Effects of alcohol and combined marijuana and alcohol use during adolescence on hippocampal volume and asymmetry. Neurotoxicol Teratol 29:141–152

    Article  CAS  PubMed  Google Scholar 

  • Moore TJ (2007) Monograph no. 14: working estimates of the social costs per gram and per user for cannabis, cocaine, opiates and amphetamines. National Drug and Alcohol Research Centre, Sydney

    Google Scholar 

  • Morales AM, Lee B, Hellemann G et al (2012) Gray-matter volume in methamphetamine dependence: cigarette smoking and changes with abstinence from methamphetamine. Drug Alcohol Depend 125:230–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narr KL, Woods RP, Thompson PM et al (2007) Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cereb Cortex 17:2163–2171

    Article  PubMed  Google Scholar 

  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  • Nelson HE (1982) National adult reading test. NFER-Nelson, Windsor

    Google Scholar 

  • Ng Cheong Ton JM, Gerhardt GA, Friedemann M et al (1988) The effects of delta 9-tetrahydrocannabinol on potassium-evoked release of dopamine in the rat caudate nucleus: an in vivo electrochemical and in vivo microdialysis study. Brain Res 451:59–68

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Buchel C (2009) Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making. J Neurosci 29:15727–15734

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48:766–777

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J et al (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Redish AD, Jensen S, Johnson A (2008) A unified framework for addiction: vulnerabilities in the decision process. Behav Brain Sci 31:415–437 -487

    PubMed  PubMed Central  Google Scholar 

  • Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. NeuroImage 53:1181–1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruge H, Wolfensteller U (2016) Distinct contributions of lateral orbito-frontal cortex, striatum, and fronto-parietal network regions for rule encoding and control of memory-based implementation during instructed reversal learning. NeuroImage 125:1–12

    Article  PubMed  Google Scholar 

  • Scherk H, Falkai P (2006) Effects of antipsychotics on brain structure. Curr Opin Psychiatry 19:145–150

    Article  PubMed  Google Scholar 

  • Schmand B, Bakker D, Saan R, Louman J (1991) The Dutch reading test for adults: a measure of premorbid intelligence level. Tijdschr Gerontol Geriatr 22:15–19

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA (2006) Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 29:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ségonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22:1060–1075

    Article  PubMed  Google Scholar 

  • Sheehan DV, Lecrubier Y, Sheehan KH et al (1997) The validity of the MINI International neuropsychiatric interview (MINI) according to the SCID-P and its reliability. Eur Psychiatry 12:232–241

    Article  Google Scholar 

  • Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  CAS  PubMed  Google Scholar 

  • Smith MJ, Cobia DJ, Wang L et al (2014) Cannabis-related working memory deficits and associated subcortical morphological differences in healthy individuals and schizophrenia subjects. Schizophr Bull 40:287–299

    Article  PubMed  Google Scholar 

  • Solowij N, Walterfang M, Lubman DI et al (2013) Alteration to hippocampal shape in cannabis users with and without schizophrenia. Schizophr Res 143:179–184

    Article  PubMed  Google Scholar 

  • Spinella M (2002) Correlations between orbitofrontal dysfunction and tobacco smoking. Addict Biol 7:381–384

    Article  PubMed  Google Scholar 

  • Substance Abuse and Mental Health Services Administration, Center for Behavioral Health Statistics and Quality (2014) Treatment episode data set (TEDS): 2002–2012. National admissions to substance abuse treatment services. BHSIS Series S-71, HHS Publication No. (SMA) 14–4850., Rockville, MD

  • Sullivan EV, Deshmukh A, De Rosa E et al (2005) Striatal and forebrain nuclei volumes: contribution to motor function and working memory deficits in alcoholism. Biol Psychiatry 57:768–776

    Article  PubMed  Google Scholar 

  • Swift W, Copeland J, Hall W (1998) Choosing a diagnostic cut-off for cannabis dependence. Addiction 93:1681–1692

    Article  CAS  PubMed  Google Scholar 

  • Tanaka SC, Balleine BW, O’Doherty JP (2008) Calculating consequences: brain systems that encode the causal effects of actions. J Neurosci 28:6750–6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398:704–708

    Article  CAS  PubMed  Google Scholar 

  • Tseng AH, Craft RM (2001) Sex differences in antinociceptive and motoric effects of cannabinoids. Eur J Pharmacol 430:41–47

    Article  CAS  PubMed  Google Scholar 

  • Turner JA (2014) The rise of large-scale imaging studies in psychiatry. Gigascience 3:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzilos GK, Cintron CB, Wood JBR et al (2005) Lack of hippocampal volume change in long-term heavy cannabis users. Am J Addict 14:64–72

    Article  PubMed  Google Scholar 

  • United Nations Office on Drugs and Crime (2014) World drug report 2014. United Nations publication, Sales No. E.14.XI.7

  • United Nations Office on Drugs and Crime (2015) World drug report 2015. United Nations publication, Sales No. E.15.XI.6

  • van der Pol P, Liebregts N, de Graaf R et al (2013) Reliability and validity of the severity of dependence scale for detecting cannabis dependence in frequent cannabis users. Int J Methods Psychiatr Res 22:138–143

    Article  PubMed  Google Scholar 

  • Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10:318–325

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang G-J, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 78:610–624

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Baler RD, Compton WM, Weiss SRB (2014a) Adverse health effects of marijuana use. N Engl J Med 370:2219–2227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkow ND, Wang G-J, Telang F et al (2014b) Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci 111:E3149–E3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Swanson JM, Evins AE et al (2016) Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: a review. JAMA psychiatry 73:292–297

    Article  PubMed  Google Scholar 

  • Vollstädt-Klein S, Wichert S, Rabinstein J et al (2010) Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 105:1741–1749

    Article  PubMed  Google Scholar 

  • Voon V, Derbyshire K, Rück C et al (2015) Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry 20:345–352

    Article  CAS  PubMed  Google Scholar 

  • Voruganti LNP, Slomka P, Zabel P et al (2001) Cannabis induced dopamine release: an in-vivo SPECT study. Psychiatry Res - Neuroimaging 107:173–177

    Article  CAS  PubMed  Google Scholar 

  • Wechsler D (1997) WAIS-III administration and scoring manual. The Psychological Corporation, San Antonio

    Google Scholar 

  • Wechsler D (1999) Wechsler abbreviated scale of intelligence (WASI) manual. Psychological Corporation, San Antonio

    Google Scholar 

  • Weiland XBJ, Thayer RE, Depue XBE, et al (2015) Daily marijuana use is not associated with brain morphometric measures in adolescents or adults. J Neurosci 35:1505–1512

  • Wetherill RR, Jagannathan K, Hager N et al (2015) Cannabis, cigarettes, and their co-occurring use: disentangling differences in gray matter volume. Int J Neuropsychopharmacol 18:1–8

    Article  Google Scholar 

  • Woodward ND, Zald DH, Ding Z et al (2009) Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study. NeuroImage 46:31–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Yip SW, DeVito EE, Kober H et al (2014) Pretreatment measures of brain structure and reward-processing brain function in cannabis dependence: an exploratory study of relationships with abstinence during behavioral treatment1. Drug Alcohol Depend 140:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Yücel M, Solowij N, Respondek C et al (2008) Regional brain abnormalities associated with long-term heavy cannabis use. Arch Gen Psychiatry 65:694–701

    Article  PubMed  Google Scholar 

  • Yücel M, Lorenzetti V, Suo C et al (2016) Hippocampal harms, protection and recovery following regular cannabis use. Transl Psychiatry 6:e710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng W, Chee MWL, Zagorodnov V (2009) NeuroImage improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3. NeuroImage 48:73–83

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Amsterdam sample was obtained with the support of grants from the Netherlands Organisation for Scientific Research–Health Research and Development, ZON-Mw grant #31180002 and an Amsterdam Brain Imaging Platform grant. The Barcelona sample was obtained with the support of grant PNSD:2011/050, Plan Nacional sobre Drogas. Ministerio de Sanidad y Política Social and grant SGR2014/1114, Generalitat de Catalunya, Spain. The Wollongong sample was obtained with the support of grants from the Clive and Vera Ramaciotti Foundation for Biomedical Research, and the Schizophrenia Research Institute with infrastructure funding from NSW Health. The Melbourne sample was obtained with the support of the National Health and Medical Research Council (NHMRC) of Australia Project Grant (#459111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentina Lorenzetti or Murat Yücel.

Ethics declarations

This study was approved by the Monash University Human Research Ethics Committee. All participants provided written informed consent.

Conflict of interests

M.Y. was supported by a National Health and Medical Research Council of Australia Fellowship (App#1117188) and the David Winston Turner Endowment Fund. The authors declare that they have no conflict of interest.

Additional information

Valentina Lorenzetti and Murat Yücel are joint last author

Electronic supplementary material

ESM 1

(PDF 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chye, Y., Solowij, N., Suo, C. et al. Orbitofrontal and caudate volumes in cannabis users: a multi-site mega-analysis comparing dependent versus non-dependent users. Psychopharmacology 234, 1985–1995 (2017). https://doi.org/10.1007/s00213-017-4606-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4606-9

Keywords

Navigation