Skip to main content
Log in

Understanding the chemical physics of nucleation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Observation and theory have steadily progressed our understanding of nucleation phenomena over the past 280 years. However, even more questions remain concerning the governing processes and mechanisms. The inherent instability and sensitivity of nucleation places a high premium on theoretical accuracy and experimental purity and similarly makes interpretation of both more challenging. The objective of the present paper is to contribute to the understanding of nucleation kinetics and thermodynamics with emphasis on cluster chemical physics within the context of Dynamical Nucleation Theory. Our hope is to share some insights that we have gained over the past several years concerning rate constants, molecular interactions, statistical mechanics and their consequences on nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Fahrenheit DG (1724). Philos Trans Roy Soc 39:78

    Google Scholar 

  • Lowitz JT (1795). Crells Chemische Annalen 1:3

    Google Scholar 

  • Laplace P (1806) Traite de Mechanique Celeste 4; von Helmholtz R (1886) Ann Physik 27:508

    Google Scholar 

  • Gay-Lussac JL (1813). Ann de Chimie 87:225

    Google Scholar 

  • Pasteur L (1848). Ann Chim Phys. 24:442

    Google Scholar 

  • Gernez D (1866). Compt Rend 63:843

    Google Scholar 

  • Gibbs JW (1876). Trans Connect Acad 3:108

    Google Scholar 

  • Coulier PJ (1875). J de Pharmacie et de Chemie 22:165

    Google Scholar 

  • Aitken J (1880). Proc Roy Soc 11:14

    Google Scholar 

  • Wilson CTR (1897) Trans Roy Soc (London) A189:265; Wilson CTR (1900) Trans Roy Soc (London) A193:289

  • Ostwald W (1896-1902) Lehrbuch Allgem. Chem., W. Engelmann, Leiprig, II, 2.

  • Volmer M, Weber A (1926). Z Phys Chem 119:277

    CAS  Google Scholar 

  • Volmer M (1939) Kinetik der Phasenbildung. Theodor Steinkopff Verlag, Dresden

    Google Scholar 

  • Farkas L (1927). Z Phys Chem A125:236

    CAS  Google Scholar 

  • Becker R, Doering W (1935) Ann Phys 24:719; Becker R (1949) Discuss Faraday Soc 5:55

  • Band W (1939). J Chem Phys 6:654

    Article  Google Scholar 

  • Frenkel J (1939) J Chem Phys 7:200; Frenkel J (1955) Kinetic theory of liquids. Dover, New York

    Google Scholar 

  • Gernez D (1865). Compt Rend 60:833

    Google Scholar 

  • Arrhenius S (1889). Z Phys Chem 4:226

    Google Scholar 

  • Ostwald WF (1897). Z Physik Chem Leipzig 22:289

    Google Scholar 

  • Mikheev VB, Irving PM, Laulainen NS, Barlow SE, Pervukhin VV (2002). J Chem Phys 116:10772

    Article  CAS  Google Scholar 

  • Sioutas C, McMurry PH, Biswas P, Hinds WC, Wilson WE (2004) J Nanoparticle Res 6:319; Voisin D, Smith JN, Sakurai H, McMurry PH, Eisele FL (2003) Aerosol Sci Technol 37:471; Smith JN, Moore KF, McMurry PH, Eisele FL (2004) Aerosol Sci Technol 38:100

  • Mullins WW, Sekerka RF (1963). J Appl Phys 34:323

    Article  CAS  Google Scholar 

  • Mullins WW, Sekerka RF (1964). J Appl Phys 35:444

    Article  Google Scholar 

  • Berg WF (1938). Proc Roy Soc A 164:79

    Google Scholar 

  • Langer JS (1980). Rev Mod Phys 52:1

    Article  CAS  Google Scholar 

  • Caroli B, Caroli C, Roulet B (1992) Instabilities of planar solidification front, in Solids far from Equilibrium. Cambridge University Press, Cambridge

    Google Scholar 

  • Zettlemoyer AC (1969) Nucleation. Marcel Dekker, New York; Abraham FF (1974) Homogeneous nucleation theory. Academic, New York

  • Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Nat Mater 2:382; Manna L, Scher EC, Alivisatos AP (2000) J Am Chem Soc 122:12700

  • Zeldovich J (1942). J Exp Theor Phys 12:525

    CAS  Google Scholar 

  • Kulmala M, Korhonen P, Napari I, Karlsson A, Berresheim H, O’Dowd CD (2002). J Geophys Res 107:8111

    Article  CAS  Google Scholar 

  • Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004). J Aerosol Sci 35:143

    Article  CAS  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  • Frenkel D (1993): In van Gunsteren WF, Weiner PK, Wilkinson AJ (ed) Computer simulation of biomolecular systems: theoretical and experimental applications, vol 2. ESCOM, Leiden, The Netherlands, p 37; Frenkel D, Smit B (1996) Understanding molecular simulation: from algorithms to applications. Academic, San Diego

  • Lee JK, Barker JA, Abraham FF (1973). J Chem Phys 58:3166

    Article  CAS  Google Scholar 

  • Kathmann SM, Hale BN (2001). J Phys Chem B 105:11719

    Article  CAS  Google Scholar 

  • Hale BN (1996) Aust J Phys 49:425; Kusaka I, Wang Z-G, Seinfeld JH (1998) J Chem Phys 108:3416

  • Kusaka I, Oxtoby D (1999). J Chem Phys 110:5249

    Article  CAS  Google Scholar 

  • Kusaka I, Wang Z, Seinfeld J (1995) J Chem Phys 103:8993; Kusaka I, Wang Z, Seinfeld J (1995) J Chem Phys 102:913; Kusaka I, Wang Z-G, Seinfeld JH (1998) J Chem Phys 108:6829; Kusaka I, Wang Z-G, Seinfeld JH (1998) J Chem Phys 108:3416; Oh K, Zeng X, Reiss H (1997) J Chem Phys 107:1242; Oh K, Zeng X (1999) J Chem Phys 110:4471; Schaaf P, Senger B, Reiss H (1997) J Phys Chem 101:8740; Schaaf P, Senger B, Voegel J-C, Reiss H (1999) Phys Rev E 60:771; Schaaf P, Senger B, Voegel JC, Bowles RK, Reiss H (2001) J Chem Phys 114:8091; Suzuki K (1996): In Kulmala M, Wagner PE (ed) Nucleation and atmospheric aerosols. Pergamon, New York; Senger B, Schaaf P, Corti D, Bowles R, Voegel J-C, Reiss H (1999) J Chem Phys 110:6421; Senger B, Schaaf P, Corti D, Bowles R, Pointu D, Voegel J-C, Reiss H (1999) J Chem Phys 110:6438

  • Schenter GK, Kathmann SM, Garrett BC (1999) Phys Rev Lett 82:3484; Schenter GK, Kathmann SM, Garrett BC (1999). J Chem Phys 110:7951

  • Schenter GK, Kathmann SM, Garrett BC (2002). J Chem Phys 116:4275

    Article  CAS  Google Scholar 

  • Schenter GK (2002). J Chem Phys 117:6573

    Article  CAS  Google Scholar 

  • Merikanto J, Vehkamaki H, Zapadinsky E (2004). J Chem Phys 121:914

    Article  PubMed  CAS  Google Scholar 

  • Hale BN, Ward R (1982) J Stat Phys 28:487; Vehkamaki H, Ford IJ (1999) Phys Rev E 59:6483; Vehkamaki H, Ford IJ (2000) J Chem Phys 112:4193; Vehkamaki H, Ford IJ (2000) J Chem Phys 113:3261

  • Reiss H, Katz JL, Cohen ET (1968) J Chem Phys 48:5553; Reiss H, Tabazadeh A, Talbot J (1990) J Chem Phys 92:1266

  • Garcia N, Soler Torroja JM (1981). Phys Rev Lett 47:186

    Article  Google Scholar 

  • Debenedetti P, Reiss H (1998) J Chem Phys 108:5498; Debenedetti P, Reiss H (1999) J Chem Phys 111:3771

  • Stillinger FH (1963). J Chem Phys 38:1486

    Article  CAS  Google Scholar 

  • Yasuoka K, Matsumoto M (1998). J Chem Phys 109:8463

    Article  CAS  Google Scholar 

  • Zeng XC, Oxtoby DW (1991) J Chem Phys 95:5940; Zeng XC, Oxtoby DW (1991) J Chem Phys 94:4472; Laaksonen A, Talanquer V, Oxtoby DW (1995) Ann Rev of Phys Chem 46:489; Oxtoby DW (1992) J Phys: Condensed Matter 4:7627; Oxtoby DW, Evans R (1988) J Chem Phys 89:7521; Cahn JW, Hilliard JE (1959) J Chem Phys 31:688

  • ten Wolde P, Frenkel D (1998) J Chem Phys 109:9901; ten Wolde P, Ruiz-Montero M, Frenkel D (1999) J Chem Phys 110:1591

  • ten Wolde PR, Ruiz-Montero MJ, Frenkel D (1996). J Chem Phys 104:9932

    Article  CAS  Google Scholar 

  • Reiss, H (2004) In: Reiss H (ed) Critique of molecular theories of nucleation. AIP: Rolla, Missouri, Vol 534, pp 181

  • Kathmann SM, Schenter GK, Garrett BC (1999). J Chem Phys 111:4688

    Article  CAS  Google Scholar 

  • Kathmann SM, Schenter GK, Garrett BC (2002). J Chem Phys 116:5046

    Article  CAS  Google Scholar 

  • Kathmann SM, Schenter GK, Garrett BC (2004). J Chem Phys 120:9133

    Article  PubMed  CAS  Google Scholar 

  • Kathmann SM, Schenter GK, Garrett BC (2005). Phys Rev Lett 94:116104

    Article  PubMed  Google Scholar 

  • Heneghan AF, Wilson PW, Wang G, Haymet ADJ (2001). J Chem Phys 115:7599

    Article  CAS  Google Scholar 

  • Kathmann S, Schenter GK, Garrett BC (1999). J Chem Phys 111:4688

    Article  CAS  Google Scholar 

  • Ellerby HM (1994) Phys Rev E 49:4287; Ellerby HM, Weakliem CL, Reiss H (1991) J Chem Phys 95:9209; Ellerby HM, Weakliem CL, Reiss H (1992) J Chem Phys 97:5766; Weakleim CL, Reiss H (1993) J Chem Phys 99:5374; Weakliem CL, Reiss H (1994) J Chem Phys 101:2398

  • Dang LX, Chang T-M (1997). J Chem Phys 106:8149

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983). J Chem Phys 79:926

    Article  CAS  Google Scholar 

  • Reinhardt WP, Hunter JE III (1992) J Chem Phys 97:1599; Reinhardt WP, Miller MA, Amon LM (2001) Acc Chem Res 34:607; Hunter III, JE, Reinhardt WP (1995) J Chem Phys 103:8627; Hunter III, JE, Reinhardt WP, Davis TF (1993) J Chem Phys 99:6856; Hogenson GJ, Reinhardt WP (1995) J Chem Phys 102:4151

  • Clausius R (1879) The mechanical theory of heat. MacMillan, London

    Google Scholar 

  • Cahan D (1993) Hermann von Helmholtz and the foundations of nineteenth century science. University of California Press, Berkeley

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953). J Chem Phys 21:1087

    Article  CAS  Google Scholar 

  • Schrodinger E (1989) Statistical thermodynamics. Dover, NEW York

    Google Scholar 

  • Vehkamaki H, Napari I, Kulmala M (2004) Phys Rev Lett 93:149501; Ianni J, Bandy AR (1999) J Phys Chem 103:2801; Ianni J, Bandy AR (2000) J Mol Struct 497:19; Re S, Osamura Y, Morokuma K (1999) J Phys Chem A 103:3535

  • Viisanen Y, Strey R, Reiss H (1993) J Chem Phys 99:4680; Viisanen Y, Strey R, Reiss H (2000) J Chem Phys 112:8205

  • Mikheev VB, Irving PM, Laulainen NS, Barlow SE, Pervukhin VV (2001). J Chem Phys 116:10772

    Article  CAS  Google Scholar 

  • Feyereisen MW, Feller DF, Dixon DA (1996). J Phys Chem 100:2993

    Article  CAS  Google Scholar 

  • Dillmann A, Meier GEA (1991). J Chem Phys 94:3872

    Article  CAS  Google Scholar 

  • Mandel MJ, McTague JP, Rahman A (1976) J Chem Phys 64:3699; Nose S, Yonezawa F (1986) J Chem Phys 84:1803; Esselink K, Hilbers PAJ, van Beest BWH (1994) J Chem Phys 101:9033; Huang J, Zhu X, Bartell LS (1998) J Phys Chem A 102:2708; Monson PA, Kofke DA (2000) Adv Chem Phys 115:113; Matsumoto M, Saito S, Ohmine I (2002) Nature 416:409

  • Anwar J, Boateng PK (1998). J Am Chem Soci 120:9600

    Article  CAS  Google Scholar 

  • Mucha M, Jungwirth P (2003). J Phys Chem B 107:8271

    Article  CAS  Google Scholar 

  • Ferrario M, Ciccotti G, Spohr E, Cartailler T, Turq P (2002). J Chem Phys 117:4947

    Article  CAS  Google Scholar 

  • Smith DE, Dang LX (1994). J Chem Phys 100:3757

    Article  CAS  Google Scholar 

  • Hynes JT (1985) The theory of chemical reaction dynamics. Chemical Rubber, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn M. Kathmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kathmann, S.M. Understanding the chemical physics of nucleation. Theor Chem Acc 116, 169–182 (2006). https://doi.org/10.1007/s00214-005-0018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0018-8

Keywords

Navigation