Skip to main content
Log in

Atomic many-body effects in the 4f XPS of the U5+ and U4+ cations: part II: consequences of orbital relaxation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ab initio, fully relativistic four component theory was used to determine atomic many-body effects for the 4f X-ray photoelectron spectra (XPS) of U5+ and U4+ cations. Many-body effects were included through the use of configuration interaction (CI) wavefunctions, WF‘s, that allow the mixing of XPS allowed and XPS forbidden configurations. This work extends our earlier study of the U 4f XPS in that the orbitals for the final, ionic states of the cations are allowed to relax in the presence of the 4f core-hole. In the earlier work, orbitals optimized for the initial state were frozen and also used for the final, ionic states. While the main XPS features are similar in both cases, using relaxed orbitals for the ionic states introduces changes in the multiplet splitting and in the 4f5/2 and 4f7/2 spin–orbit splitting. The extent of configuration mixing for the U5+ and U4+ final state WF’s is characterized by the magnitude of the intensity lost by the main peaks to satellites. Overall, the use of relaxed orbitals improves the agreement between the theoretical XPS for the U4+ cation and the experimental measurements for UO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fadley CS, Shirley DA, Freeman AJ, Bagus PS and Mallow JV (1969). Phys Rev Lett 23: 1397

    Article  CAS  Google Scholar 

  2. Gupta RP and Sen SK (1974). Phys Rev B 10: 71

    Article  CAS  Google Scholar 

  3. Gupta RP and Sen SK (1975). Phys Rev B 12: 15

    Article  CAS  Google Scholar 

  4. Bagus PS, Schrenk M, Davis DW and Shirley DA (1974). Phys Rev A 9: 1090

    Article  CAS  Google Scholar 

  5. Bagus PS, Broer R, de Jong WA, Nieuwpoort WC, Parmigiani F and Sangaletti L (2000). Phys Rev Lett 84: 2259

    Article  CAS  Google Scholar 

  6. Ilton ES, deJong WA and Bagus PS (2003). Phys Rev B 68: 125106

    Article  Google Scholar 

  7. Bagus PS, Broer R and Ilton ES (2004). Chem Phys Lett 394: 150

    Article  CAS  Google Scholar 

  8. Bagus PS, Ilton ES and Rustad JR (2004). Phys Rev B 69: 205112

    Article  Google Scholar 

  9. Bagus PS and Ilton ES (2006). Phys Rev B 73: 155110

    Article  Google Scholar 

  10. Bagus PS and Viinikka EK (1977). Phys Rev A 15: 1486

    Article  CAS  Google Scholar 

  11. Freeman AJ, Bagus PS and Mallow JV (1973). Int J Magn 4: 35

    CAS  Google Scholar 

  12. Bethe HA and Salpeter EW (1957). Quantum mechanics of one- and two-electron atoms. Academic, New York

    Google Scholar 

  13. Å berg T (1967). Phys Rev 156: 35

    Article  Google Scholar 

  14. Sangaletti L, Parmigiani F and Bagus PS (2002). Phys Rev B 66: 115106

    Article  Google Scholar 

  15. de Groot FMF (1994). J Electron Spectrosc Relat Phenom 67: 529

    Article  CAS  Google Scholar 

  16. Bagus PS, Woll C and Ilton ES (2006). Chem Phys Lett 428: 207

    Article  CAS  Google Scholar 

  17. Gunnarsson O, Sarma DD, Hillebrecht FU and Schonhammer K (1988). J Appl Phys 63: 3676

    Article  CAS  Google Scholar 

  18. Kotani A and Ogasawara H (1993). Physica B 16: 186–188

    Google Scholar 

  19. Ilton ES and Bagus PS (2005). Phys Rev B 71: 195121

    Article  Google Scholar 

  20. Zaanen J, Westra C and Sawatzky GA (1986). Phys Rev B 33: 8060

    Article  CAS  Google Scholar 

  21. Okada K and Kotani A (1992). J Phys Soc Jpn 61: 4619

    Article  CAS  Google Scholar 

  22. Visscher L, Visser O, Aerts PJC, Merenga H and Nieuwpoort WC (1994). Comput Phys Commun 81: 120

    Article  CAS  Google Scholar 

  23. Saue T, Bakken V, Enevoldsen T, Helgaker T, Jensen HJA, Laerdahl JK, Ruud K, Thyssen J, Visscher L (2000) Dirac, a relativistic ab initio electronic structure program, Release 3.2.

  24. Bagus PS, Illas F, Pacchioni G and Parmigiani F (1999). J Electron Spectrosc Relat Phenom 100: 215

    Article  CAS  Google Scholar 

  25. de Jong WA, Visscher L and Nieuwpoort WC (1999). Theochem 458: 41

    Article  CAS  Google Scholar 

  26. Condon EU and Shortly GH (1951). The theory of atomic spectra. Cambridge University Press, Cambridge

    Google Scholar 

  27. Briancon C and Desclaux JP (1976). Phys Rev A 13: 2157

    Article  CAS  Google Scholar 

  28. Taguchi M, Uozumi T and Kotani A (1997). J Phys Soc Jpn 66: 247

    Article  CAS  Google Scholar 

  29. Taguchi M, Uozumi T, Okada K, Ogasawara H and Kotani A (2001). Phys Rev Lett 86: 3692

    Article  CAS  Google Scholar 

  30. Kim YK and Bagus PS (1973). Phys Rev A 8: 1739

    Article  CAS  Google Scholar 

  31. Sangaletti L, Depero LE, Bagus PS and Parmigiani F (1995). Chem Phys Lett 245: 463

    Article  CAS  Google Scholar 

  32. Löwdin PO (1955). Phys Rev 97: 1474

    Article  Google Scholar 

  33. Prosser F and Hagstrom S (1968). Int J Quantum Chem 2: 89

    Article  CAS  Google Scholar 

  34. Prosser F and Hagstrom S (1968). J Chem Phys 48: 4807

    Article  CAS  Google Scholar 

  35. McLean AD, Yoshimine M, Lengsfield BH, Bagus PS, Liu B (1990) In: Clementi E Modern techniques in computational . MOTECC-90. ESCOM Science Publishers B.V, , p~593

  36. Ilton ES, Boily J-F, Bagus PS (2007) Surf Sci 601:908

    Article  CAS  Google Scholar 

  37. Slater JC (1960). Quantum theory of atomic structure, vols I and II. McGraw-Hill, New York

    Google Scholar 

  38. Schiff LI (1968). Quantum mechanics. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Bagus.

Additional information

Contribution to the Serafin Fraga Memorial Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagus, P.S., Ilton, E.S. Atomic many-body effects in the 4f XPS of the U5+ and U4+ cations: part II: consequences of orbital relaxation. Theor Chem Account 118, 495–502 (2007). https://doi.org/10.1007/s00214-007-0364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0364-9

Keywords

Navigation